

FUL LINE CATALOG

Jan. 2017

WKW W	
TAE	BLE OF CONTENTS
118	
KP	KA PV
1.	1. 1
	X
₩ > ~	×> ~
	THI I'V
Company Polile	4
Integrated Microwave Assemblies (IMA)	Beam Forming Networks6
To combine (iiii)	Frequency Converters8
×	Transmit/Receive Modules11
	Data Links & Smart Munition
	Transmitter for IFF16
	Receivers and Receiver Subassemblies18
	Switched Filter Banks25
	D(NA
V	Amplitude Control Modules33
Davies Associations	Called State Daview Arts Nife (CCDA) 40
Power Amplifiers	Solid State Power Amplifiers (SSPA)42 Custom SSPAs57
	Custom SSFAS
Attenuators / Modulators	General and Applications Notes64
	Attenuators Selection Guide71
	Switched Bit Attenuators110
Phase Shifters &	General and Applications Notes125
I-Q Vector Modulators	Phase Shifters Selection Guide137
	Bi-Phase Modulator138
	I-Q Vector Modulator141
	Phase Smifter, Frequency Translator157
Switches	General and Applications Notes166
~	Switches Selection Guide170
	SPST thru SP16T175
THIN.	Iransfer switch272
	Hermetically Sealed274 High Power296
11/2	
Limiters	General and Applications Notes
₹	Limiters Selection Guide322
V	Limiters Broadband323
	Limiters Narrowband324
_	Special Limiters326
	11/4.

TABLE OF CONTENTS

*	
Millimeter Wave	General328
Components	Attenuators329
(18-46 GHz)	Phase Shifters334
	Switches338
	3 dB quadrature coupler344
Δr	integrated Microwave Assemblies347
*	
Sources	General348
	Synthesizer350
A	Dig tally Tuned (DTO)378
Va	Frequency Locked (FLO)394 Voltage Controlled (VCQ)398
7-1	Voltage Controlled (VCO)398
**	
***	V
Appendix	dBm Volts Watts Conversion Table404
	VSWR Conversion Table405 Terms and Conditions of Sales407
Dr. V	Model Number Index405
	Product Index408
1	THE THE PERSON OF THE PERSON O
7 1	
/ /	
	A PV
	1, 1
	. **
	——————————————————————————————————————
展別開開	July V

KRATOS GENERAL MICROWAVE

Kratos General Microwave is one of the largest international independent microwave companies with over 30 years of proven experience in the market. Our products are used in a variety of demanding environments including airborne, ground and naval systems.

Kratos General Microwave is a recognized worldwide leader in the design and manufacture of high performance, state-of-the-art Microwave components and subassemblies for the defense as well as non-defense markets. We are supporting a wide range of requirements with catalog and custom Microwave products for applications such as:

For the Defense market: Electronic Warfare (EW) systems, Radars, Missiles, VAV, Smart Munition, GPS Immune, Communications, Data Links, HLS and Simulators

For the Commercial market: In-Flight-Connectivity, IFF, Test Equipment, RF and Fiber Optic Communications, Industry, Research Laboratories and Medical Instruments.

Microwave Product solutions supporting a wide range of applications including:

Broadband Oscillators and Synthesizers (0.5 to 18GHz and beyond)

Fast Indirect Synthesizers with less than 1 microsecond settling time with modulation, Direct Coherent Synthesizers with 40 nanosecond settling time, Digitally Tuned Oscillators (DTOs) Phase Locked Oscillator (PLOs) and Voltage Controlled Oscillators (VCOs).

KRATOS GENERAL MICROWAVE

Solid State Power Amplifiers (SSPAs)

Up to 1KW in X and Ku-bands for missiles, airborne Radars and HLS radars, up to 1 KW in VHF, for military and non-military applications, Pulse Power Amplifiers for IFF systems and Low Noise Amplifiers.

Integrated Microwave Assemblies (MAs) and Sub-Systems

Beam Forming Modules

A versatile line of complex high-density modules utilizing Surface Mount Technology, for Phase Array Padars

Transceivers and Receivers.

Superior performance and cost effectiveness. This product line includes both Narrowband and Broadband products, covering 0.5 – 18 GHz, for various applications such as Direction Finder subsystem for ELINT and ESM airborne systems, Data Links for Missiles, Smart Munition, UAVs, Centric Network Warfare, JDAM/BDI and more.

Custom IMAs

Integrated Microwave Assemblies built per specific customer's requirements such as: RF Front Ends, Frequency Converters, and DLVAs.

Control Components (0.1 – 40 GHz)

Based upon PIN diode and proprietary coupler technology. This product line includes Switches (SPST up to SP26T) for low, medium and high power, Switched Filter Banks, Attenuators, Limiters, Modulators, Phase Shifters, Frequency Translators and I/Q Vector Modulators. All these products, with either digital or analog control.

ISO 9001:2008 and AS9100 Rev. C

Kratos General Microwave has been registered to ISO 9001:2008 and AS9100 Rev. C. applicable to the design, manufacture and sales of microwave components super components and sub systems.

RoHS Compliance

Kratos General Microwave has a policy of continuous environmental improvement and is committed to working closely with its suppliers and customers to achieve this goal.

The RoHS Directive stands for "the restriction of the use of certain hazardous substances in electrical and electronic equipment". Most of Kratos General Microwave's components are available as RoHS compliant, meeting the requirements of the RoHS Directive when indicted RoHS compliant in our literature and on our web site. If your parts require RoHS compliancy, please indicate as RoHS compliant when you place your order.

Integrated Microwave Assemblies (IMA)

KRATOS General Microwave manufactures both Catalog and Custom integrated Microwave Assemblies (IMA). This type of multi-function assembly is sometimes identified as a "Supercomponent" or "Microwave Integrated Circuit" with the primary objectives of significantly increasing performance while reducing the size and weight of a system. Applications can range from high environmentally sixessed Airborne and Naval Systems to simply size reduction of large Ground Systems and Test Systems.

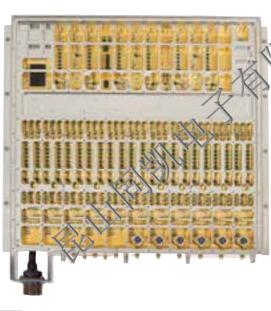
In addition to designing IMAs which incorporate Microwave Control Components and or Signal Sources, KRATOS General Microwave Engineering has the capability to also include Amplifiers, Filters, Switched Filters, Power Splitters/Couplers, Gain Equalization Circuits depending on individual Customer specification requirements.

KRATOS General Microwave Engineering carefully reviews the specification requirements of each IMA in order to choose the optimum integration technology to provide the Customer with a high performance, high reliability and cost effective solution. These integration technologies can include any one or a combination of the hollowing:

Standard Chip & Wire Technology (MIC)

Surface Mount Technology (SMT)

Integration of Discrete Control Components


Selection of the appropriate integration technology is typically driven by various factors which can include, Frequency Range, Bandwidth, available volume and number of IMAs required for production.

KRATOS General Microwave has developed many IMAs including Phase & Amplitude Control Modules for Simulators, Beam Forming Networks for Phased Array Radars, E coat and Up & Down Converters, Transmit/Receive Modules and Solid State Power Amplifiers operating in the X to Ku Frequency Ranges. Examples of a few of those IMAs have been provided

SMT BEAM PAMING NETWORK - FOR PHASED ARRAY RADARS

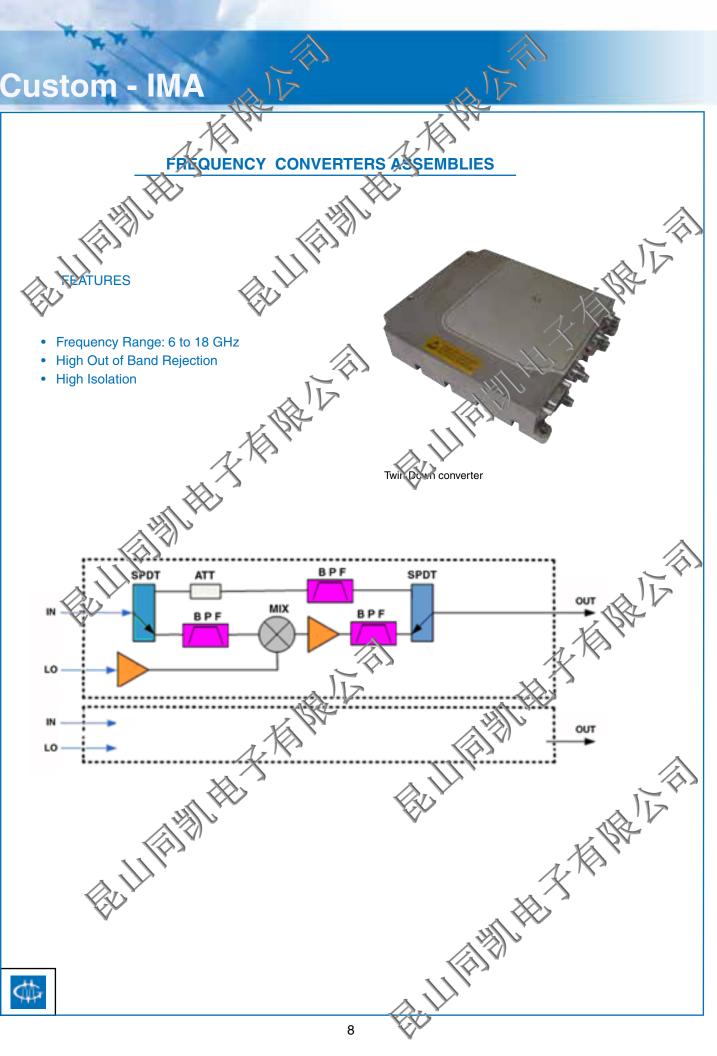
FEATURES

- L and IFF Frequency Bands
- SMT Technology
- · Control of Amplitude and Phase

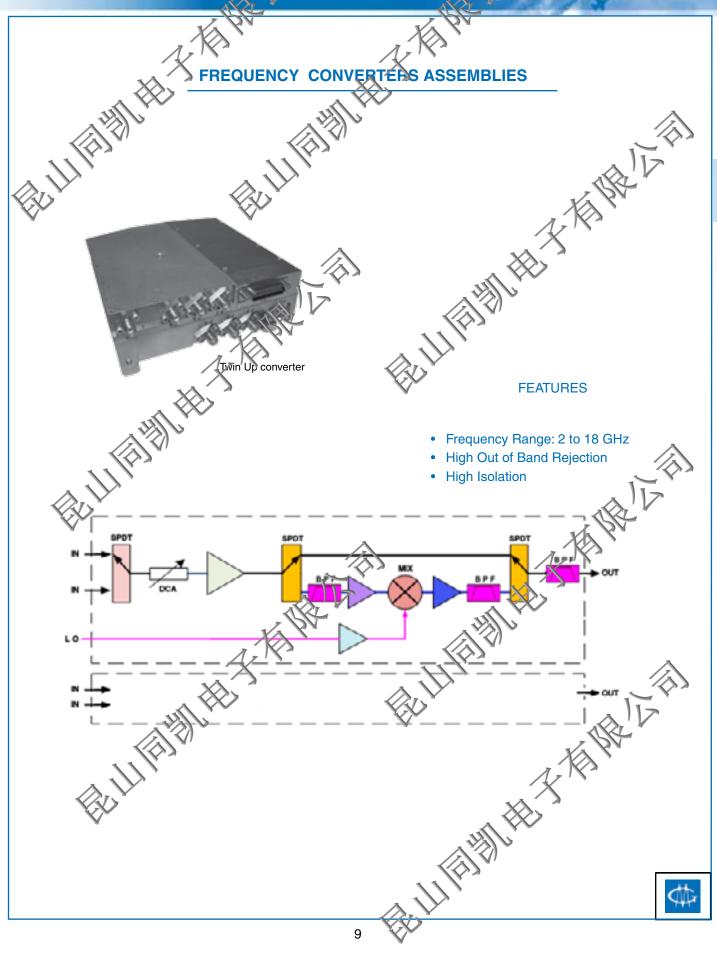
ELIII ELIIII ELIII ELIIII ELIII ELIII ELIII ELIII ELIII ELIII ELIII ELIII ELIII ELIIII ELIIII ELIII ELIII ELIII ELIII ELIII ELIII ELIIII ELIII ELIII ELIIII ELIII ELIIII ELIII ELIII ELIII ELIIII ELIIII ELIIII ELIIII ELIIII ELIIII ELIIII ELIIII ELIII ELIIII ELIII

- Low Noise Figure
- Wide Dynamic Range

FEATURES


- Wide Frequency Range
- Airborne Application

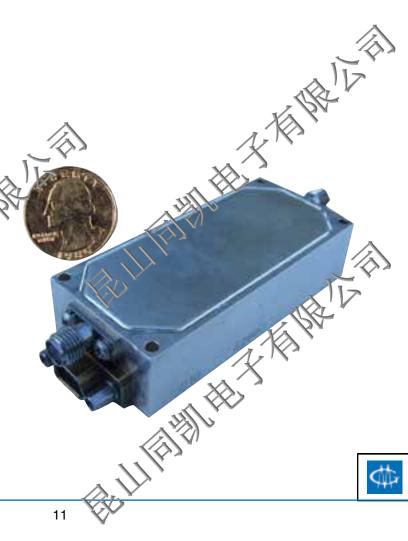
- Airborne Application
- **Blind Mating**



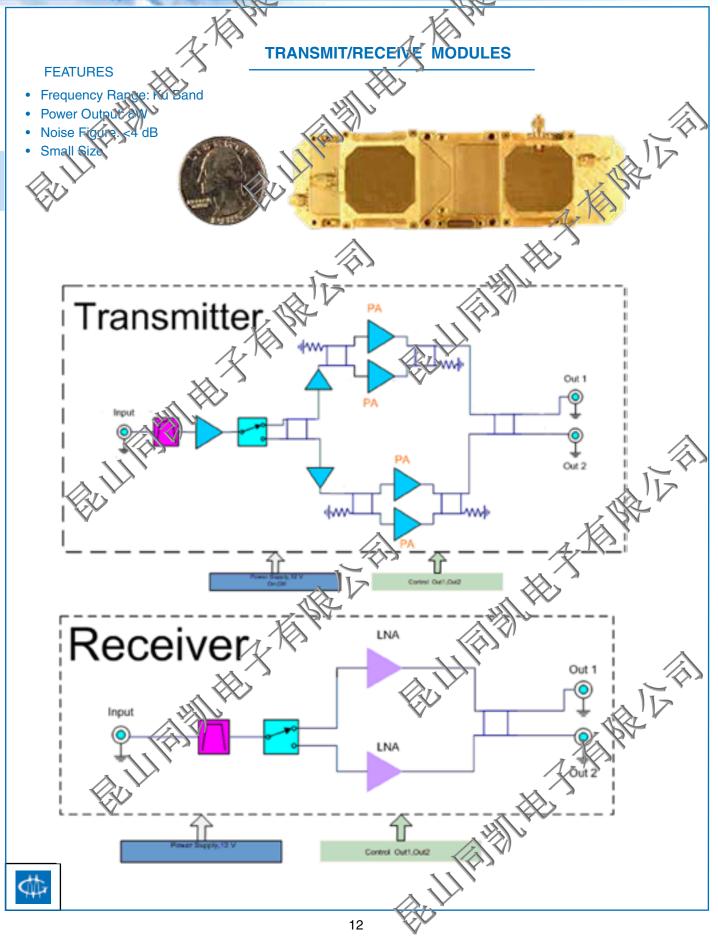
Custom - IMA

Gustom - IMAs

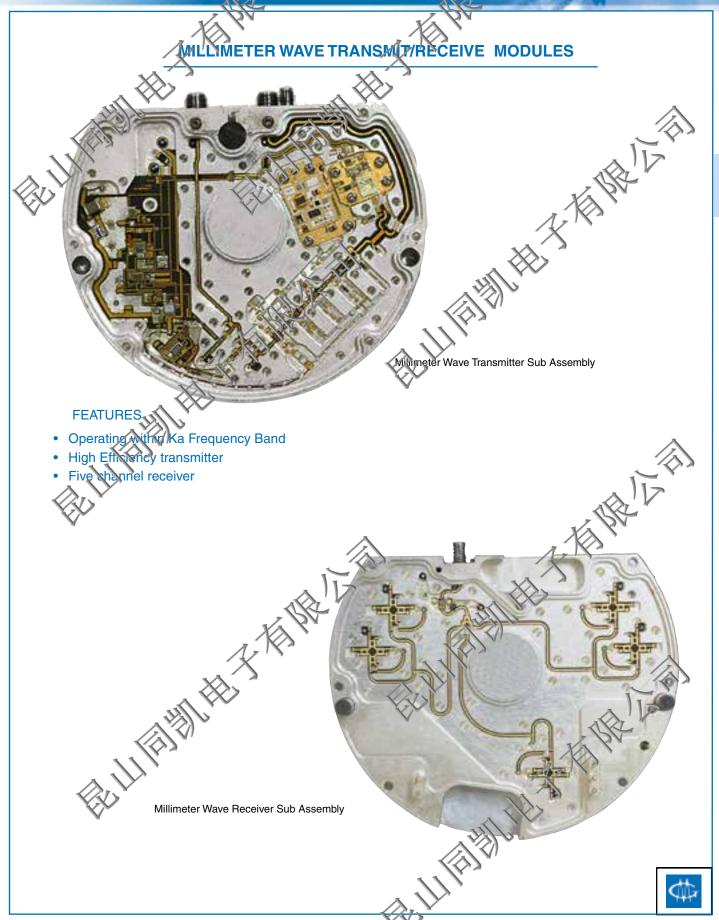
Custom - IMA



Custom - IMAs


FEATURES

- Frequency Range: 6 to 8 GHz
- Power Output:
- Noise Figure: 6.6 dB
 Attenuation Control Range: 15 dB
- Phase Control Range: 180⁰



Custom- IMAs

Custom - IMAs

Custom - IMA

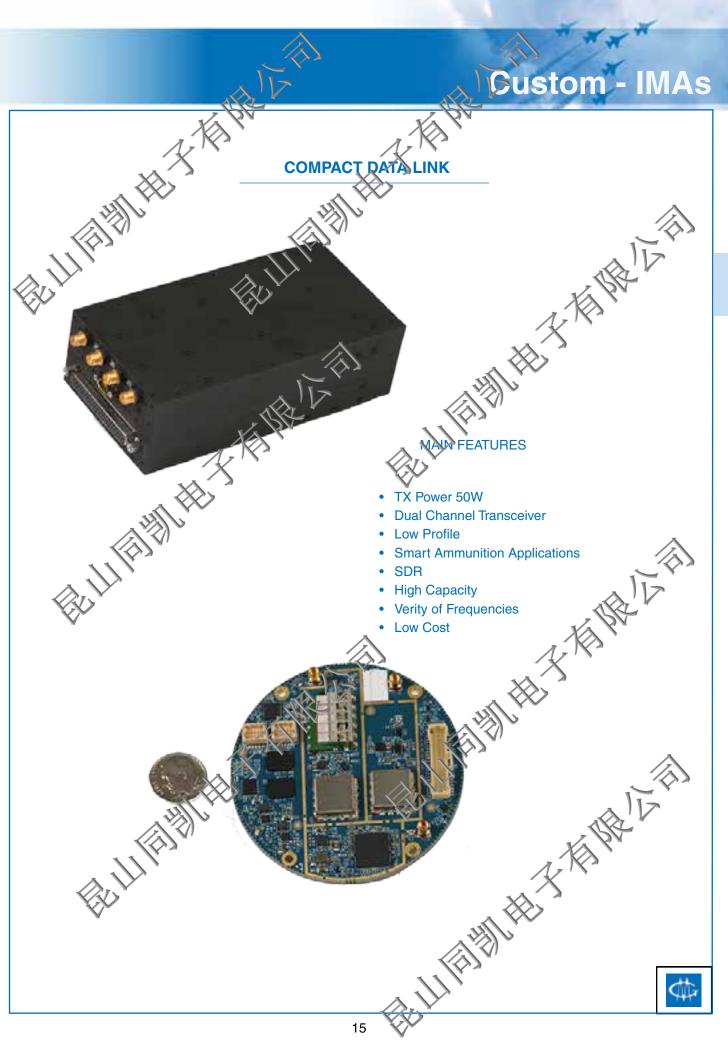
TRANSCEIVER FOR DATA-LINKS and SMART MUNITION

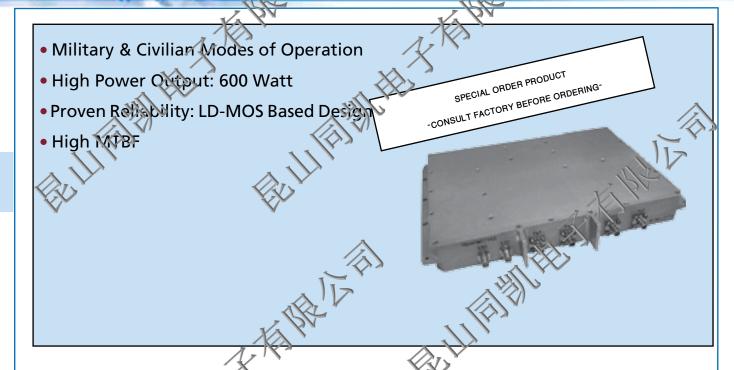
KRATOS General Microwave designs and manufactures a variety of customized DATA-LINKS subsystems, from small, cimple, low cost, low power to somplex, high-end, high power. Those Data Links are used in various platform and applications such as VAV, mini-UAV, Missiles, Smart/Precision Guided Munition, Natwork Centric Warfare (NCW) etc. The products combine State Of The Art Microwave technology, mixed signal processing, System On Chip (SoC) devices, high power FPGAs and other Digital technologies.

Kritos General Microwave is offering Data-Links products in two options, based on the customer preference::

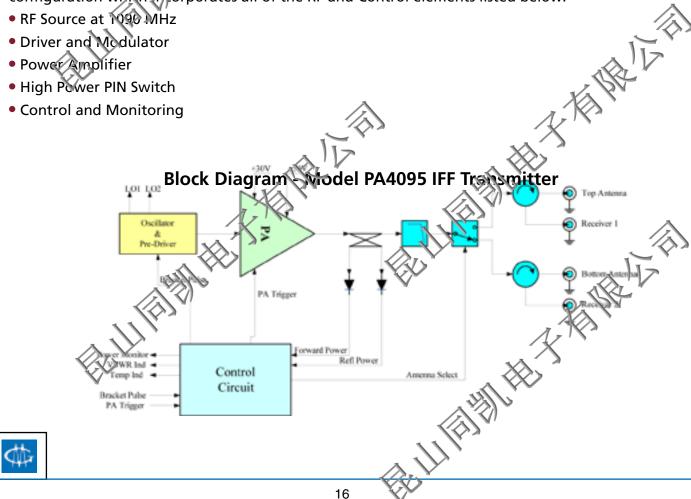
- Hardware only allowing the customer to incorporate their own IP Firmware / Modern etc.
- Full Data link, including Microwave, Hardware and Firmware.

KRATOS General Microwave has successfully delivered hundreds of Data Links systems to its customers and continues to develop new generations of DATA LINKS with superior capabilities and additional features.

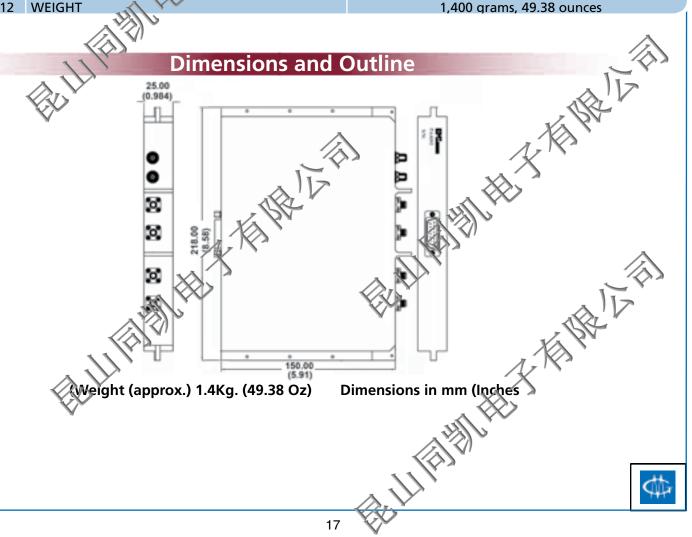

L BAND DATA LINKS


- TX Fower >100W
- Pulse / Half Duplex Mode
- High Altitude >200Kfeet
- **High Capacity**
- **Ground Stations**
- High End

Custom - IMAs



Model PA4095 IFF Transmitter


APPLICATIONS

The Model PA4095 was designed to be the transmitter module in an IFF system. It is a state-of-the-art configuration which incorporates all of the RF and Control elements listed below:

Model PA4095 FF Transmitter

		, / (<i>\</i>)
	PARAMETERS	SPECIFICATION
1	OUTPUT FREQUENCY, MHz	1,090
2	PEAK POWER OUTPUT, Watts, min.	600
3	OUTPUT PORTS	2 (selectable)
4	SWITCHING TIME, msec, max. (between output ports)	50
	OUTPUT POWER DIFFERENCE, \(\delta\), \(\max\). (between first & last pulse)	± 1
6	REPLAY PULSES	60 for 8 Sec. Preamble & 55 Sec. Data Block
	^	116 for 8 Sec. Preamble & 112 Sec. Data Block
7	DUTY CYCLE, %, max.	A 💢 2
8	TEMPERATURE RANGE, Degrees C	JHI.
	Operating	-40 to +85
	Storage	-55 to +95
9	EMI/EMC	As per MIL-STD-161E
10	ALTITUDE	As per mMIL-E-5000T: 70,000 feet
11	DIMENSIONS	218 x 150 x 25 mm , 8.58 x 5.90 x 0.98"
12	WEIGHT	1,400 grams, 49.38 ounces

Super Heterodyne Wideband Receiver Model WBR-0518-MOD

- Three simultaneous F outputs
- AM and FM detectors
- Low Phase Woise
- Modes of Operation: Scan Mode or Search Mode
- **Built in test functions**

Low Power Consumption

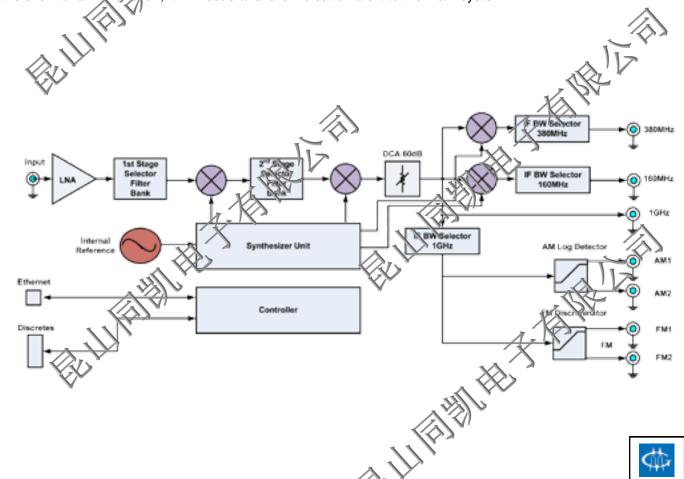
Low cost

SPECIAL ORDER PRODUCT -CONSULT FACTORY BEFORE ORDS

Receiver Model WBB-0518-MO

APPLICATION

The Model WBR-0518-MCD Wideband Receiver utilizes cutting eage technology which provides a high performance and cost effective solution. It has been designed for use as a stand alone receiver or it can be used in more complex receiving systems for ELINT and ESM applications. A COLI


DESCRIPTION

The Model W&R-0518-MOD Super Heterodyne Wideband Receiver was designed to be a low cost, high performance, self contained system capable of advanced detection and processing of communication and non-communication signals. This receiver of ers all the features required for high data rate reception while maintaining high pulse fidelity for interception of radar signals. It is ideally suited fol today's complex environments.

Signals from the antenna are fed to the WBR receiver input. The input stage consists of a bigh dynamic range front end which includes a preselector. The dual down converter sections use synthesized LO inputs to convert all incoming signals to 1 GHz signal. This 1 GHz signal is then fed to the IF assembly for further conversion, gain control and filtering to provide simultaneous outputs of 160 MHz and 380 MHz. The 1 GHz signal is also provided as a third and separate IF output. In addition, the 1 GHz signal is fed, in parallel, to the demodulator sections which comprise of AM and FM detectors. These can then extract the respective amplitude and frequency information from the modulation 1 GHz IF signal be it CW or narrow pulse widths of 50 nanoseconds.

The WBR internal control assembly configures all of the receiver sub-assemblies and collects their response to generate a global status report. The internal control assembly also includes a communication link with the external Host computer.

The WBR has built in test (BiT) capability which continuously monitors the operation of the receiver. In the event of a malium tich, it will issue a failure indication alert to the main system.

PLEFORMANCE CHARACTER STICS

	PANAMETER	SPECIFICATION
1	Operating Input Frequency, min (GHz)	0.5 to 18
2	Noise Tigure, max (dB)	14
3	Sensitivity (dBm) @ 500 MHz and SNR of 15dB	-58
4	DCA Range, min (dB)	0 to 60
5	DCA Resolution, min (dB)	1
6	Measurable Pulse Width	50 ns to CW
7	Input Signal Modulations	Pulse AM and FM
8	Instantaneous Dynamic Range (dis)	59
9	Number of IF outputs	3
10	IF signal # 1	Centered at 380 MHz with selectable bandwidths of 50, 100, 250, 500 MHz
11	IF signal #2	Centered at 160 MHz with selectable bandwidths of 1, 10, 20, 50, 100 MHz
12	IF signal # 3	Centered at 1 GHz with bandwidth of 500 MHz
13	Image Rejection, min (dB)	60
14	RF to IF Gain (dB)	5 to 10
15	Input 1dB CP, min (dBm)	
16	Input / Output Impedance (Ohms)	1111/20
17	Input / Output VSWR, max	2:1
18	Spurious Level, max (dBm)	-55
19	Survival Input Power max (dBm)	+20
20	Total Tuning and Settling Speed	Less than 1ms to center frequency
21	Tuning Stop Size, min (MHz)	1, 1
22	Integrated Phase Error, max.	0.8° PMS

PERFORMANCE CHARACTERISTICS	A.	78	-/-
PERFORMANCE CHARACTERISTICS	_		
	100	CDCADMANICE	
	_	ENTUNIVANUE	CHARACAENIO I ICO

	7 (2)	
	PARAMETER	SPECIFICATION
23	Phase Noise Performance (SSB), max (dPc/hz)	
24	@ 1k) Iz offset	- 85
25	@ 10 kHz offset	- 90
26	@ 100 kHz offset	- 100
27	@ 1 MHz offset	- 130
28	Tuner Frequency Stability	Less than ppm/year
29	Video Signal Outputs	LOG AM and FM Detectors (at 1 GHz, BW: 100 or 500 MHz)
30	Power Supplies Requirements	
31	5 VDC ± 2.5%	3.2A max
32	-5 VDC ± 3.5%	0.1A max
33	12 VDC ± 5%	3.6A max
34	-12 VDC ± 5%	0.3A max.
35	Receiver Controls	Fast Ethernet (100 Base 1)
36	Built In Test (BIT)	L'A'
37	On line	Runs in the background
38	Off line	Woon request
39	Operating Temperature Range, min	0°C to + 70° C
40	Dimensions	440 x 220 x 40 mm (17.3" x 8.66" x 1.57")
41	Weight	5.8 Kg (13.8 Lb)
	21	
		-

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature Range0°C to +70°C Storage Temperature Par ge-40°C to +85°C

Humidity95% RH non

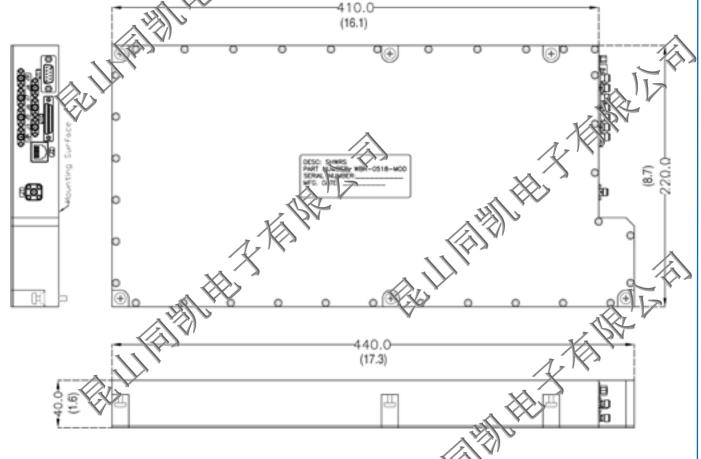
condensing, @35

Shock22g, Half sine, 20 n see

each axis

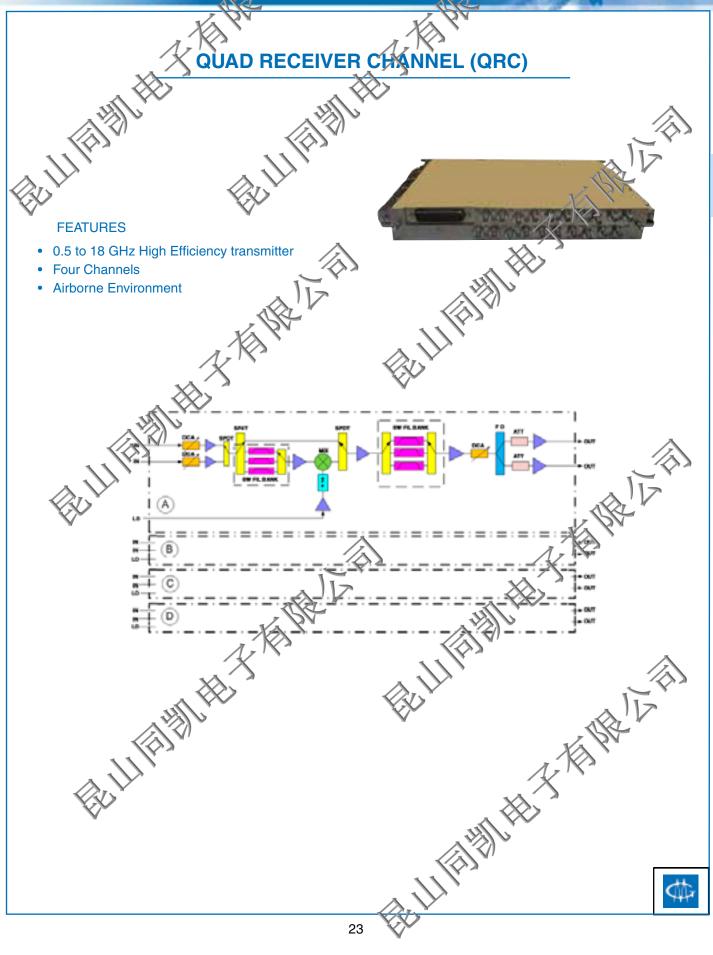
Vibration.....Per MIL-STQ-167-1A

EMI/EMSPer M/L 461C

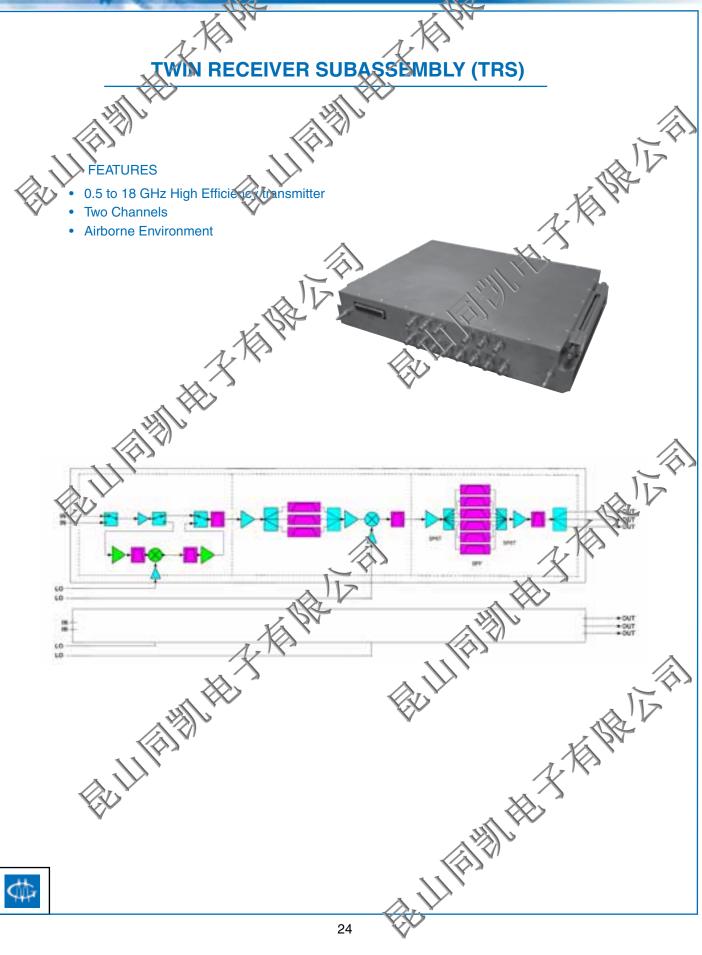

AVAILABLE OPTIONS

Option No. Description

G09 Guaranteed to meet Environmental Ratings


DIMENSIONS AND OUTLINE

The WBR outline shown below can be modified to meet installation requirements of complex receiver systems.



Dimensions in mm (inches)

Custom Receiver

Custom Receiver

SWITCHED FILTER BANKS

KRATOS General microwave is providing various types of Switched Filters banks. These are customized products designed to meet specific customers bequirements. The main features of this product line are: ACE THE PARTY OF T

- Switching
- Low Loss
- 2. Low Loss 3. Temperature Stability

he following filter technologies are being used by us:

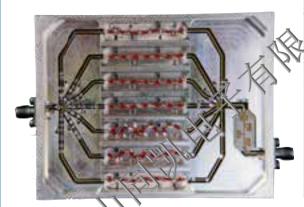
- 1. Cavity Combline
- 2. Lumped Elements
- 3. Printed Filters

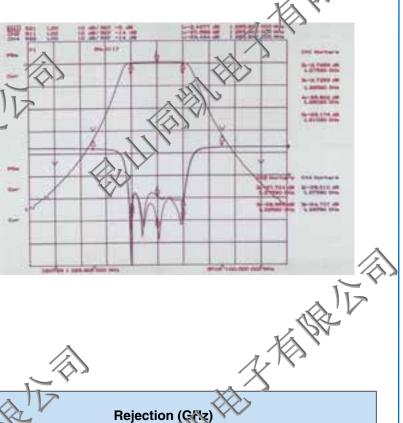
The following are samples of switched filter panks supplied by us

展別順期限 SUB-MINIATURE SWITCHED FILTER BANK

FEATURES

- Miniature Cavity 9 Channel
- Very Thin unit: 9 mm, 0,3

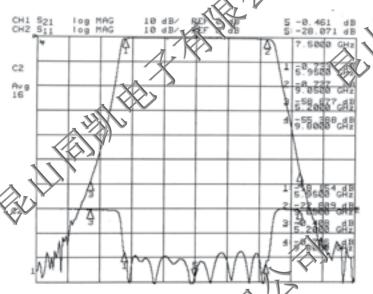




Model SBF-0518-7 LEM VARIOUS TECHNOLOGIES IMPLEMENTED IN A SWITCHED FILTER BANK

Filters Implements by: Lumped Elements and Printed filters
No. of Channels: 7

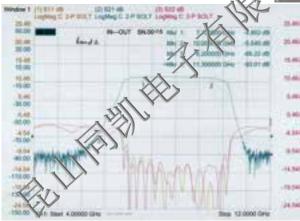
equency range: 0.5 to 18 GHz



СН	Pass Band (GHz)	Insertion Loss (dB)		Rejecti	on (G/3z)	
		A	30 dB	45 dB	95 dB	60 dB
1	0.472 to 0.808	9.0	14 to 20	11	1 to 14	DC to 0.22
2	0.728 to 1.320	9.0	14 to 20		1.5 to 14	DC to 0.4
3	1.240 to 2.088	9.0	16 to 20		2.4 to 16	DC to 0.07
4	10.456 to 18.088	9.0		21 to 30	DC to 8.4	- 18
5	2.000 to 3.500	9.0		21 to 30	DC to 1.4	4 to 10
6	3.400 to 5.100	9.0		DC to 2.9	X	6.8 to 20
7	5.050 to 10.550	9.0			DC to 4.7	12 to 21

4		1 2 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5-56-68 649 6-8-65 649 6-2-68 649 6-2-68 649		はは一方
СН	Pass Band (GHz)	Insertion Loss (dB) max.	11	Min. Rejection (GHz)	
	X	IIIux.	50 dB	65 dB	50 dB
1	5.95 to 9.05	7.5	2.2 (6 5.2	13.4 to 16.4	11.2
2	8.95 to 12.85	7.5	1.6 to 5.4	16.0 to 19.8	144
3	12.75 to 16.05	7.5	1.6 to 4.8	6.4 to 9.6	11.2
4	15.95 to 20.05	7.5	1.6 to 3.6	8.8 to 12,8	14.4
					\$
			27		

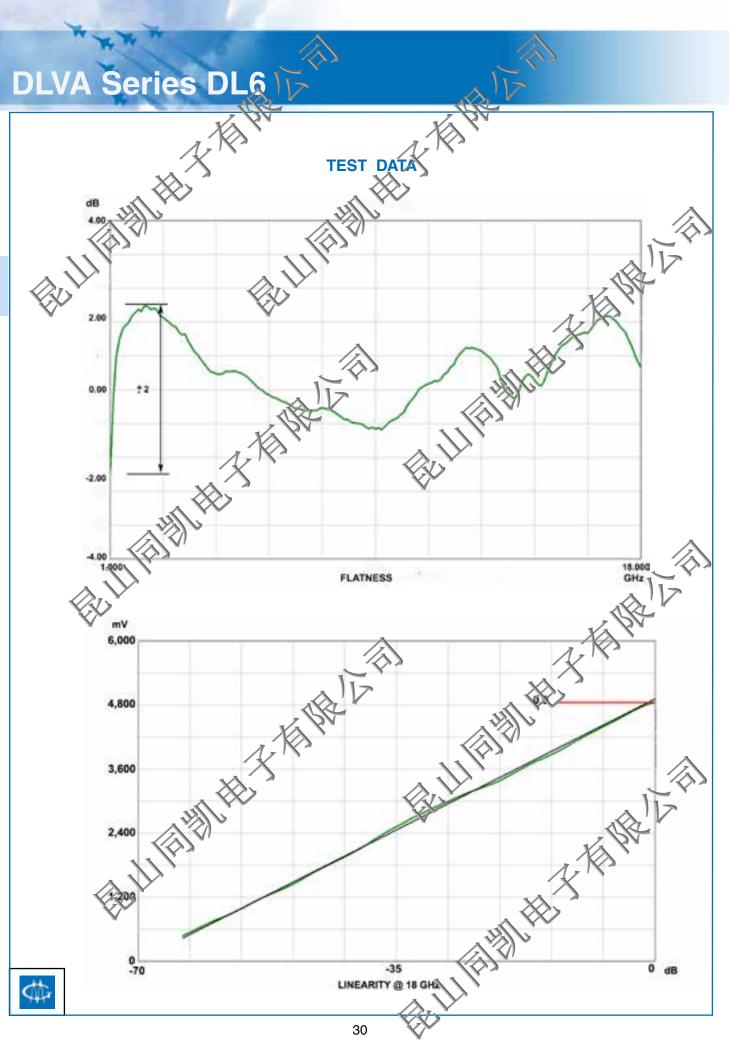
Model SBF-618-6-PR


PRINTED TYPE SWITCHED FILTER BANK

Filter implemented by: Printed filters

No. of Channels: 6

Frequency range: 5.5 to 18 GHz



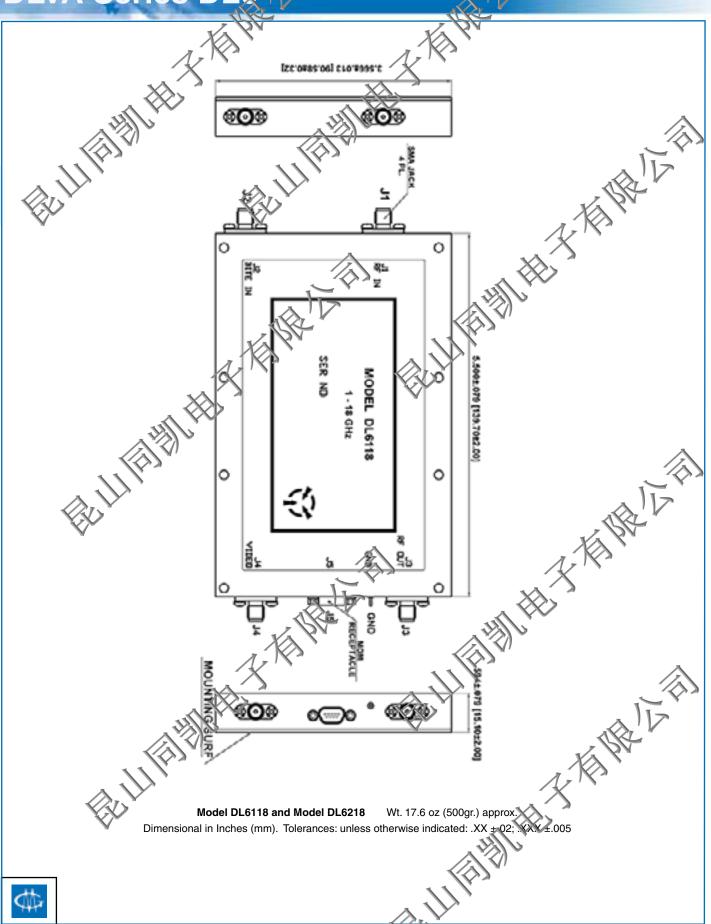
					- /
No.	Freq. Range (GHz)	Ins. Loss (dB)	Stop Band 55 dBc (GHz)	Stop Band 70 dBc (GHz)	
1	5.5 to 7.9	0.00	2.0 to 4.3	9,2 to 19.9	
2	7.7 to 10.0	6.8	2.0 to 6.2	11.3 to 19.0	
3	9.6 to 12.0	6.8	2.0 to 8.2	13.3 to 19.0	
4	11.7 to 14.6	6.5	2.0 to 10.5	15.5 to 19.0	
5	13.7 te 25.7	6.5	2.0 to 12.0	17.0 to 19.0	113
6	15% to 17.8	6.5	2.0 to 13.5	@ 19.0	
				剧制制	
			28		

Detector ogarithmic Video Amplifier DIVA DL6 Series

DLYA Series DL6

MAIN SPECIFICATIONS

		MODEL DL6118	MODEL DL6218
	PARAMETER	SPECIF	ICATION
1	Frequency Range, min. (GHz)	1 to 18	2 to 18
2	CW RF I/P POWER ⁽¹⁾ AT J1, max. (W)		2
1 3/2	TSS dBm (20 MHz VIDEO BW), Min. (dBm)	-6	57
1 4	SP2T RF SWITCH ISOLATION, Min. (dB)	6	60
5	SWITCHING TIME, Max. (nS)	200 (TURN	ON & OFF)
6	DLVA TYPE		ENDED DYNAMIC
7	LOGGING RANGE (dBm)	66	TO 0
8	LOG SLOPE (mV/dB)	7	0
9	I/P PULSE WIDTH RANGE (InS)	0.050	TO 150
10	RISE TIME, Max. (p.	2	25
11	SETTLING TIME (FOR 50 nS PULSE), Max. (18)	3	5
12	FILTER REJECTION AT RF & VIDEO O/P PORYS, Min. (dB)	60 @ DC to 850 MHz	60 @ DC to 1,700 MHz
13	DC POWER (PROTECTED FOR REVERSE POLAR SHORT CKT PROTECTION & EMI/EMC)	RITY, OVER VOLTAGE	E UP TO ±20V,
4 1	15 V ± 5%, Max. (A)	1	.3
	-15 V ± 5%, Max. (mA)	30	00
////>			


(1) Other specifications are available. Please contact Sales.

ENVIRONMENTAL SPECIFICATIONS

OPERATING TEMPERATURE RANGE (°C)	-40°C TO +85°C
STORAGE TEMPERATURE RANGE	-54°C TQ \90°C
RANDOM VIBRATION (OPERATIONAL)	0.3 g2/Hz, 20-2000 Hz
RELATIVE HUMIDITY	95%
ALTITURE	SEA LEVEL TO 10 Km
MECHANICAL SHOCK	75 g, HALF-SINE, 6 mS, 18 SHOCKS
EMI/EMC	AS PER MIL-STD-461C
ACCELERATION (STRUCTURAL)	10.5 g ON ALL FACES
	STORAGE TEMPERATURE RANGE RANDOM VIBRATION (OPERATIONAL) RELATIVE HUMIDITY ALTITUDE MECHANICAL SHOCK EMI/EMC

DLVA Series DL6

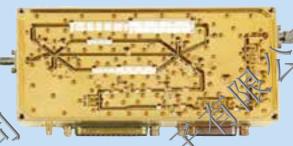
Amplitude Control Module Series ACM Specifications

SPECIAL ORDER PRODUCT

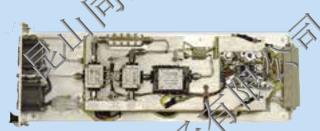
The Series ACM Integrated Microwave Assemblies (IMAs) were developed for use in high performance Simulator and ATE Systems. They provide precise control of signal Amplitude and Pulse Modulation over a high dynamic range with very fine resolution and can cover a Frequency Range of 0.5 to 40 GHz in only three modules.

These IMAs were designed using the optimum construction technology to achieve superior products and ease of manufacturing. These include Surface Mount Technology for the 0.5 to 2 GHz module, Chip & Wire (MIC) technology for the broad band 2 to 18 GHz module and Integrated Discrete Components for the much lower volume 18 to 40 GHz module.

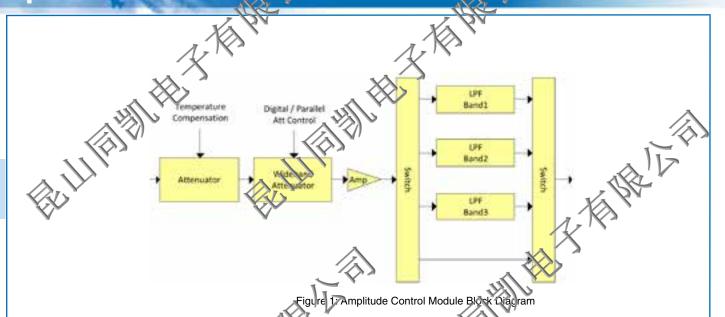
OPTION


Similar modules, which allow the control of both Phase and Amplitude, are also available. Consult the Factory for details.

High Gain


- High Dynamic Range: 95 dB
- High Resolution: 0.15 dB
- Low Harmonics
- Pulse Modulation: 90 dB, 25 nsec
- Phase Control: Option
- Monotonicity: Guaranteed

Model ACM2052 0.5 to 2 GHz Amplitude Control Module


Model ACM2218 2 to 18 GHz Amplitude Control Module

Model ACM1840 18 to 40 GHz Am litude Control Module

Amplitude Control Module Series &CM Specifications

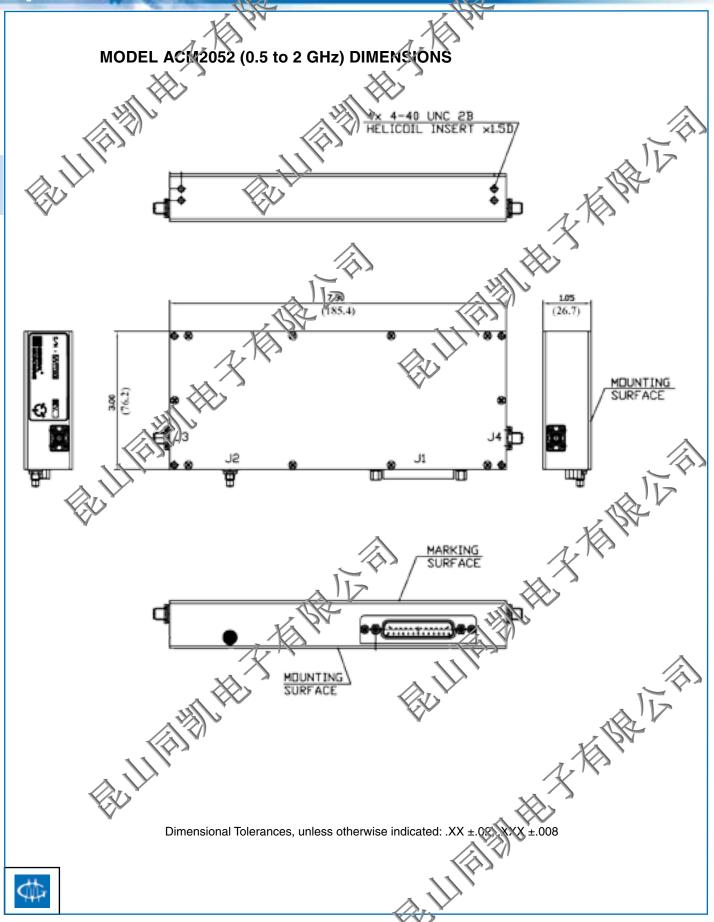
PERFORMANCE CHARACTERISTICS

XA.					
PARAMETER	SPECIFICATION				
MODEL NUMBER	ACM2052	ACM2218	ACM1840		
FREQUENCY RANGE, min (GHz)	0.5 to 2	2 to 18	18 to 40		
OUTPUT ROWER, 1 dB compression (dBm)	15	15	6		
GAIN, min (dB)	17	@ 2.0 to 3.5 GHz 14 @ 3.5 to 6.0 GHz 16 @ 6.0 to 10.4 GHz 17 @ 10.4 to 18.0 GHz 18	7		
HARMONICS, max (dBc)		-60			
INPUT VSWR, max		2,5:			
OUTPUT VSWR, max	2:1	2.5:1	2.5:1		
ATTENUATION	1	1/2	120		
RANGE, min (dB)	100	100	98		
CONTROL	- VV	10 BITS TTL			
RESOLUTION, nominal (dB)	0.1	0.1	0.2		
MONOTONICITY		GUARANTEED			
SWITCHING SPEED, max (m sec)		***			

Amplitude Control Module Series ACM Specifications

PERFORMANCE CHARACTERISTICS (Cont.)

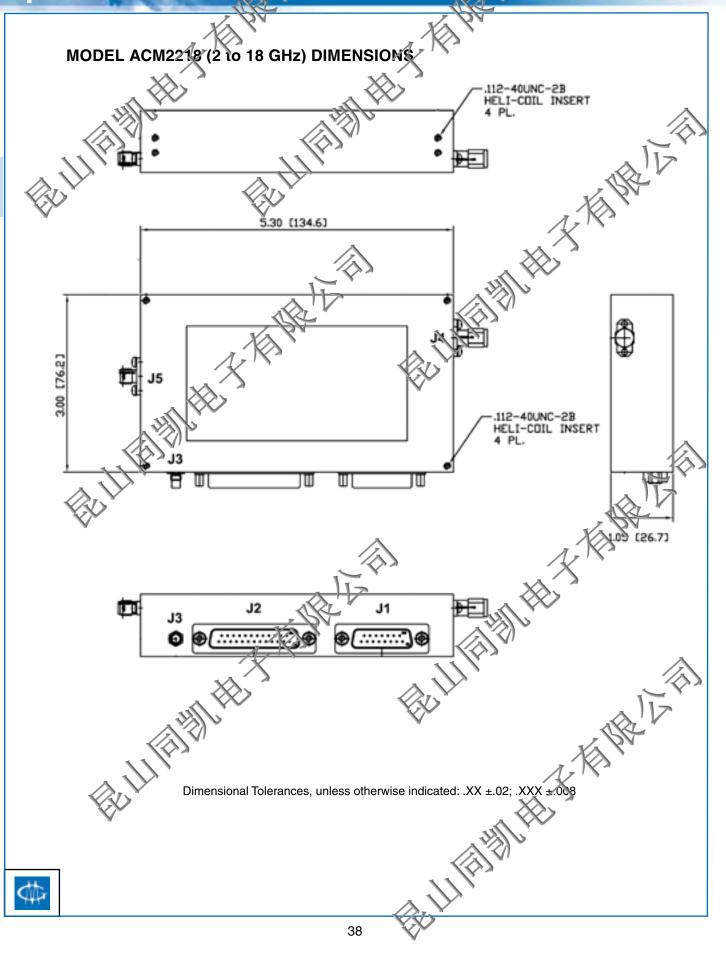
PARAMETER	SPECIFICATION				
MODELNUMBER	ACM2052	ACM2218	ACM1849		
Phase Control (OPTIONAL)	360°	360°	:)60=		
PULSE MODULATION					
ISOLATION, min (dB)	80	90	70		
SWITCHING SPEED, max (nsec)	25	25	25		
PULSE CONTROL					
OPERATING TEMPERATURE	+40°C to +50°C				
STORAGE TEMPERATURE	0°C to +50°C				
POWER SUPPLY REQUIREMENT	PLY REQUIREMENT				
+5V DC, max (mA)	580	600	270		
+10V DC, max (n.A) *	N/A	800	700		
+12V DC, max (mA)	750	N/A	N/A		
+15V DC, max (mA)	600	400	300		
15V DC, max (mA)	400	400	3.0		


^{* +10}VDC to +15VDC Optional

MODEL ACM2052 (0.5 to 2 GHz) CONNECTORS

CONNECTORS DATA					
PORT	PORT FUNCTION	QTY.	DESCRIPTION	NOTES	
J1	CONTROL & SUPPLY	1	DB25 (PLUG)	PER MIL-C-24308	
J2	MODULATOR CONTROL	1	SMC MALE	PER MJL-C-39012	
J	RF IN	1	SMA FEMALE	PEB MiL-0-39012	
J4	RF OUT	1	SMA FEMALE	PER MIL-C-39012	

Amplitude Control Module Series &CM Specifications


Amplitude Control Module Series ACM **Specifications**

MODEL ACM2052 (0.5 to 2 GHz) CONNECTOR J1 Pinout

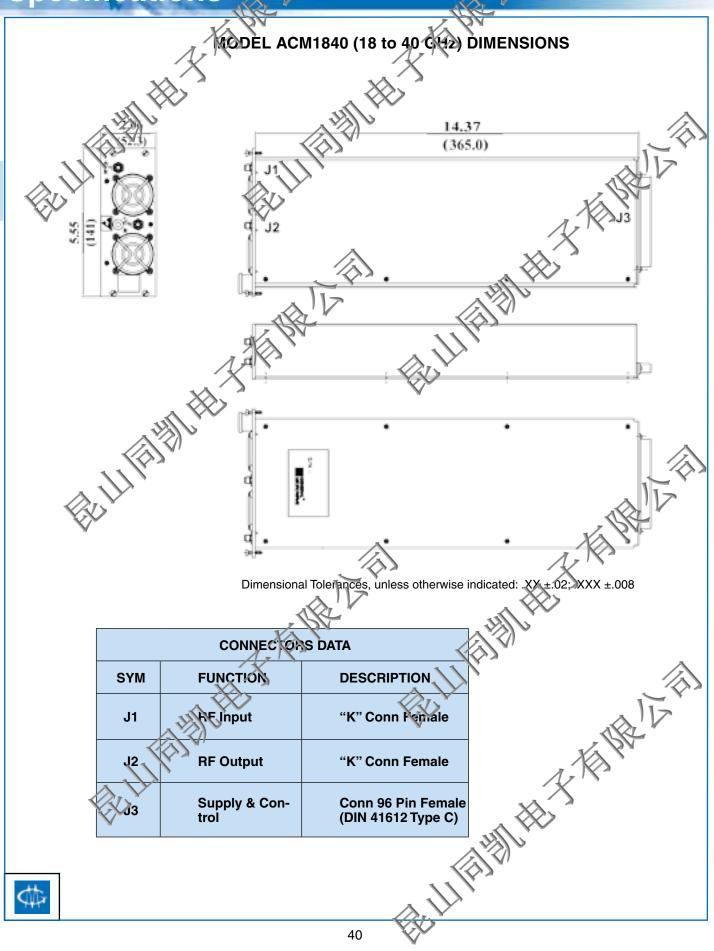
PIN #	FUNCTION	
	+15V	
2	+15V	113
3	GND	
4	+5V -	
5	GND	A.K.
6	-15V	XX.
7	GND	
8	+12V	
9	GND	(I)
10	0.5 - 0.8 GHz band CTRL	
11	0.8 - 1,3 GHz band CTRL	
12	1,3 - 2 GHz band CTRL	A
13	Output SP4T Termination CTRL	
14	Temp GND	
15	Temp OUT	
16	A1 (Attenuator LSB) 0.1 dB	
17	A2 0.2 dB	
18	A3 0.4 dB	1.
19	A4 0.8 dB	
20	A5 1.6 dB	
21	A6 3.2 dB	THE STATE OF THE S
22	A7 6.4 dB	
23	A8 12.8 dB	
24	A9 25.6 dB	
25	(Attenuator MSB) 51.2 dB	
(Rel)	(H)	是加州和大馬根拉
11	>`	AK"
Ø\v\		
V		

根据根据 根拟原规队

Amplitude Control Module Series & M **Specifications**

Amplitude Control Module Series ACM Specifications

MODEL ACM2218 (2 to 18 GHz) CONNECTORS INFORMATION


	CONNECTORS DATA				
11/	FUNCTION	DESCRIPTION			
J1	VVA Control & Supply	Conn D-Type 15P Per MIL-C-24308			
J2	MODULE Con- trol & Supply	Conn D-Type 25P Per MIL-C-24308			
J3	Pulse Modula- tion Control	Conn SMC Male, Per MIL- C-39012/77-0002			
J4	RF In	Conn. SMA Male, Per MIL-C-39012			
J5	RF Out	Conn. SMA Female, Per MIL-C-39012			

J1 PIN FUNCTIONS				
PIV	FUNCTION			
1	.10 dB			
2	.20 dB			
3	.40 dB			
4	.80 dB			
5	1.60 dB			
6	3.20 dB			
7	6.40 dB			
8	12.80 dS			
9	25.6 08			
10	51.2 dB			
11	Strobe			
12	Strobe Enable			
13	+15 V			
14	-15 V			
15	GND			

DESCRIPTION	J2 PIN FU	JNCTIONS
Conn D-Type 15P Per MIL-C-24308	PIN#	FUNCTION
	1	2-3.5 Rand
Conn D-Type 25P Per MIL-C-24308	2	NÇ
Conn. SMC	3	N/C
Male, Per MIL- C-39012/77-0002		3.5-6 Band
AXX "	(5)	N/C
Conn. SMA Male, Per MIL-C-39012	6	N/C
Conn. SMA Female,	7	6-10.4 Band
Per MIL-C-39012	8	N/C
	9	N/C
	10	10.4-18 Band
	11	N/C
	12	N/C
	13	Park Stole
\triangle	14	N/Ç
	15	N/C
2/12	16	N/C
	13(Temp Monitor
N.	18	+5 V
	19	N/C
	20	-15 V
	21	+10 V
	22	+10 V
	23	GNI
	24	ND
	25	GND
	/In	4 -

Amplitude Control Module Series ACM **Specifications**

Amplitude Control Module Series ACM Specifications

	MODEL ACM1840 (18 to 40 GHz) CONNECTOR (J3)				
	PIN#	RCW A	ROW B	ROW C	
	1	Pri Enable (pulse)	RF Enable Screen GND	GND	
	2	GND	GNS	GND	
	3	+10V	(A)0(V)	+10V	
	411	N.C.	N.C.	N.C.	
0	5	Filter Bit 1 (26.5-40 GHz)	Filter Bit 0 (18-26.5 GHz)	TEMP, MONITOR	
X	o	GND	GND	GND	
	7	+5V	+5V	+5V	
	8	-15V	-15V	-15	
	9	ATT STROBE LATCH	N.C.	THING	
	10	N.C.	N.C.	A9 (Attenuator MSB) 51.2 dB	
	11	A8 25.6 dB	A7 12.8 dB	A6 6.4 dB	
	12	A5 3.2 dB	A4 1.6 dB	A3 0.8 dB	
	13	A2 0.4 dE	A1 0.2 dB	A0 (Attenuator LSB) 0.1 dB	
	14	GNO	GND	GND	
	15	N.C.	N.C.	N.C.	
	16	N.C.	N.C.	N.C.	
	17	N.C.	N.C.	N.C.	
	18	N.C.	N.C.	N.C.	
	19	N.C.	N.C.	N.C.	
	20	GND	GND (GND /	
	21	-15V	GND	+15V	
	22	N.C.	GND	5V	
	23	N.C.	N.C.	N.C.	
	24	N.C.	N.C.	N.C.	
	25	N.C.	N.C.	N.C.	
	26	N.C.	N.C.	N.C.	
	27	N.C.	N.C.	N.C.	
	28	GNO	Sense GND	GND	
	29	LED 1 Power (Green)	Sense	LED 1/2 GND	
	30	LED 2 Fault (Red)	N.C.	N.S	
	31	Fan +24V	N.C.	Fan 0V	
	32	Fan +24V	N.C.	Fan 0V	

SSPA - Power Amplifiers

POWER AMPLIFIERS

KRATOS General Microwave/Eyal offers a broad range of High Power Amplifiers for both Military and Commercial applications extending over the VHF to Ku Band Frequency Range. The KRATOS Engineering staff is available to design new products to individual specifications or provide more cost effective customization of existing products, to meet specific Customer recoverents. Our Power Amplifiers are typically for used in:

- 1. RADAR
- 2. ECM and COMJAM
- 3. Data-Links for UAVs
- 4 Test Systems
- 5. Communication and Cellular Based Stations
- 6. Special applications

The following is a summary of our capabilities and existing Power Amplifier products

MAIN FEATURES

- 1. VHF up to Ku bands
- 2. Power levels up to 1 Kw, CW or Pulse modules
- 3. Operating in Class A, AB and C.
- 4. Solid state technology; utilizing transistors such as Bi-Polar, LDMOS and GaAs.
- 5. Enabling various inputs.
- 6. Can be integrated as a RF subassembly module, or as 19" Rack mounted. 1. VHF up to Ku bands 2. Power levels up to 1000, CW or Pulse modules

- Operating in Class A, AB and C.
 Solid state technology; utilizing transistors such as Bi-Polar, LDMOS and GaAs.
- 5. Enabling various inputs.
- 6. Can be integrated as a RF subassembly module, or as 19" Rack mounted.
- 7. Control

 a) Renote control optional of RS 232, RS422 or ETHERNET
 - b) Control of Output Power by remote setting and ALC (Automatic Level Control)

PA PROTECTION and MONITORING

Special means and capabilities are implemented to Project the Power Amplifiers from the following conditions and to monitor them (at the system level):

- 1. Over Temperature.
- 2. Forward Power.
- 3. Reflected Power.
- 4. Open/Short Load VSWR.

CUSTOM PA AND SSPA PRODUCTS

Examples of KRATOS General Microwave/Eyal Custom PA and Solid State Power Amplifier (SSPA) ucts and listed below and can be found on pages 35 to 39. Consult the Factory with your specific rec ments

Solid State Power Amplifier SSPA

(SOND STATE POWER AMP(IFIER (SSPA)

The Solid State Pewer Amplifier (SSPA) product line was designed for use in the most demanding applications, including Airborne, Missile, Radars and Communications. They are also a practical solution for more benign laboratory or field Test Systems. These diverse applications are made possible by the use of today's cutting edge technologies for design and manufacturing of the SSPAs. As a result, these SSPAs provide high performance, reliability and cost effective alternatives to applications currently using Traveling Wave Tube (TWT) Amplifiers. All SSPAs are designed using the Power Summation concept (Fig1) which provides a graceful degradation capability not found in TWTs and critical to mission completion.

The product line supports both X and Ku Band applications with band width up to 10% and offers peak power outputs up to 400 Watts. Successful SSPA designs have utilized Gallium Arsenide or Gallium Nitride power devices depending upon which was better suited for the application. The flexibility of the SSPA design provides the ability to extend to adjacent frequency bands requiring only a short development time at very low risk.

he RF input to the SSPA (see fig. 2), is pre-amplified and split into several parallel symmetric branches. Each branch includes a power amplified section (PA). This distributed design of the SSPA results in built in redundancy and graceful degradation of output power should any individual PA section fail. Each branch includes a current sense alarm indication which is monitored and fed to the SSPA controller. The amplified outputs of all the symmetric branches are summed up in a passive combing network which routes the resultant high power to the output of the SSPA.

- X and Ku BandsPower Output: up to 400W
- · High Daliability
- High Reliability
- For Severe Environmental Applications
- Low Life Cycle Cost

Custom GaAs SSPA

Custom GaN SS A. Assembly

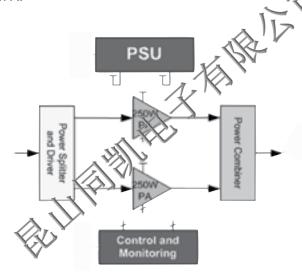


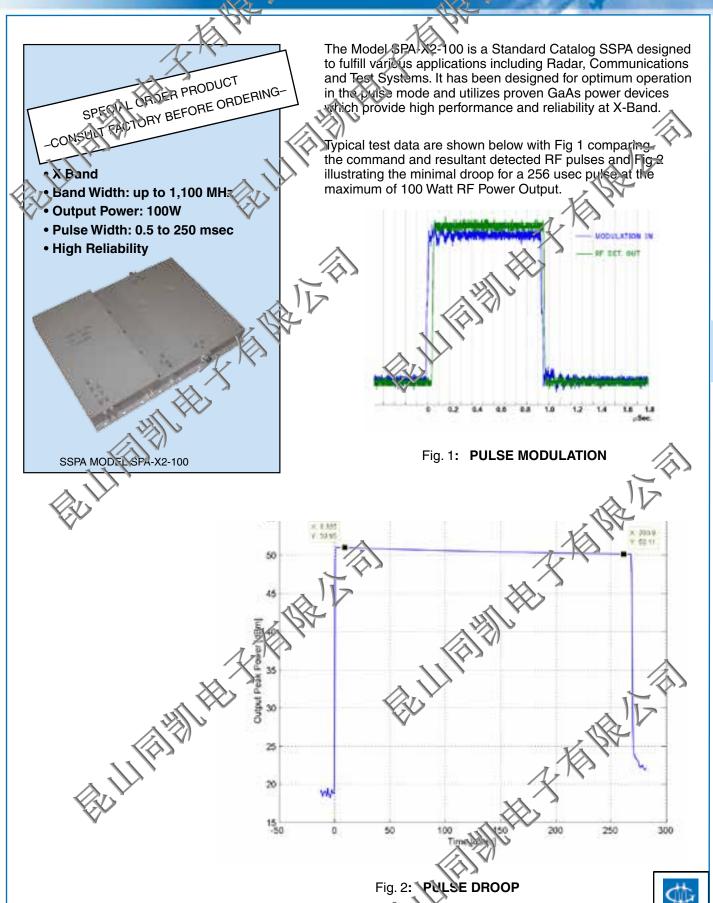
Fig. 2: SSPA 400W BLOCK DIAGRAM



Fig. 1: POWER SUMMATION

SSPA - Power Amplifiers

A compact and highly efficient switching Power Supply Unit (PSU) is to ultrinto the SSPA. This state-of-the-art PSU design ensures that any contribution of phase noise and spurious signals are significantly reduced at the RF output. The SSPA control section includes a Modulator which switches the DC lines of the individual PA sections On/Off to achieve the required Pulse Width, Pulse Repetition Interval and Duty Cycle. The SSPA Monitoring section includes Built-in-Test capability which receives indications from critical internal subassemblies, including the PA sections, thereby constantly monitoring the condition of the SSPA.


Most all SSPA designs are custom deriving from Customer specifications because of the differing requirements for specific applications such as Airborne Radars and Missile Seekers. There are, however, many applications which can be served by more generic SSPAs as summarized in the below table. They are offered as Special Catalog SSPAs and intended to provide the user with a proven, cost effective solution. TANK THE PARTY OF rather than a new design.

CATALOG SSPA SELECTION GUIDE

MODEL	FREQUENCY BAND	OUTPUT POWER	PAGE	COMMENTS
SGN-K1-7	Ku Band	7W	56	GaN
SPA-X2-100	X BAND	100W	45	GaAs
SPA-X3-200	X BAND	200W	48	GaAs
SGN-X3-400	X BAND	400W	51	GaN
SGN-X4-20	X BAND	20W	E4	GaN
SGN-34-50	X BAND	50W	54	GaN
CUSTOM SSPA			57	1/8/2
	想法			A THE REPORT OF THE PARTY OF TH

提加斯斯根子相關

SSPA Model SPA-X2-100

SSPA Model SPA-X2-100

MAIN SPECIFICATION

	14.7	A
	PARAMETER	SPECIFICATION
1	Suquency Range, (GHz)	8.5-11
1.1/	Bandwidth, (MHz) max.	1,100
3	Peak Saturated Output Power, (W) min.	100
(2)1	Average Output Power (W) min.	25
2.2	Amplitude Flatness, de PTP	1.2
2.3	RF Out Amplitude Droop @ Pulse Width of 250 µSec, (dB) max.	1.5
3	Output Load VSWR, max	2:1
4.1	Large Signal Gain, (dB) min. (with 0 dBin, input)	53 (1)
4.2	Input RF Drive, (dBm)	0 to 5 (1)
5	Pulse Width, (µSec)	0.5 - 250 (1)
6	RF Rise/Fall Time, (nScc.) max.	50nSec
7	Duty Cycle, (%) max.	(2C)
8	PRF, (kHz)	1 – 600 (1)
9	Input Sapoly Voltage, (V)	+28 (2)
9.1	Average input Current, (A) max.	7
10	DC Power Consumption, (W) max.	215
11	Switching Power Supply (Provided as part of the SSPA)	Ultra quiet, non-synchronized architecture
2	Spurious Level between PRF Control Lines, (dBc) min.	70
13	Efficiency, (%) min.	15
14	Operating Temperature Range, (°C)	-40 to +85
15	Other Typical Environmental	Per Mil STD 810D
	Specifications	
16	Dimensions L x W x H, (Inch)	9.00 x 7.00 x 1.2
17	Dimensions L x W x / (, (mm)	228.6 x 1.7.8 x 30.5
1) Other spe 2) Option 20' AVAILA Option it G09	BLEOPTIONS	限加州根外系
<u> </u>	46	
	-10	A

(2) Option 20V to 60V.

AVAILABLE OPTIONS

SSPA Model SPA-X2-100

		The same of the sa	THE STATE OF THE S	The same of the sa
		7-10		
	CONNECTOR	FUNCTION	YPE	COMMENTS
	DESIGNATION	A	XX	
	MIL	RF In	SMA F	^
		RF Out	SMA F	
4	J3	MODULATION In	Feed Through	Solder Pin 0.8Ø
	VDC IN	Input Voltage In	Feed Through	Solder Pin 1.00
$\langle \rangle_I \rangle$	VDC IN RET.	Input Voltage Return	Feed Through	Solder Pin 1.00
1		V		N. C.
		DIMENSIONS	S AND WEIGHTS	X
		FEED THROUGH PIN	CEER TURNICU DIN	
	00		FEED THROUGH PIN SMALE #0.8 (#0.03)	S CO CONN
			o (<>>)	
		CHENO CHO OC	ND ,	
		X	HOLNTING XUT ACE	
		12 Mai 21 Maru x 26 Holes		•
	The			
			J2 RF DUT	
	1 Kry			
_				115
	V	175		TO L
,	'		A	1 7 00:
	SI	PA-X2-100		164 c 16483
	St	ATE T		~ >
			7	, «» I
			A LLI	
	1.38	7-1		<i>(1)</i>
	Z Z	X 1	11/4	
	>>	₩ 1 9 g	No. IN	
	- P. D.		• ***	
		Lan 10177 Lan L	0.201	
	-345 (20)	T42 (0.17)		2.5 (0.10) _M
		-228.6 1	(9.00)	
			o	XX 19
	V		11/	
		88.6 (3.49)		Lee 02 00 00 00 00 00 00 00 00 00 00 00 00
	Dimens	sions in mm (Inches) Tolerances, u	nless otherwise indicated: .XX ±.	.02; .XXX ±.005
		Wt: 70.5 oz (2Kg.) approx	

CHEVIAL ORDER PRODUCT
-CONSULT FACTORY BEFORE ORDERING-

GaN Technology

- X Band
- Band Width: up to 100 GHz
- Output Power: 200W
- Pulse Width: 0.5 to 256 mSec.
- High Efficiency

The Model SGN-X3-200 is part of our Catalog SGN series Solid State Power Amplifiers (SSPA). The SGN SSPA series is based on the GaN technology. Utilizing the GaN technology enables us to provide our customers a lower cost SSPA, with high efficiency and higher packaging, while maintaining all of the advantages of the SSPA, such as High Reliability and Power Redundancy.

The application of this series of GaN based SSPA, is to fulfill various requirements of high reliable products at lower cost. Typical applications of this SSPA are for Radar, Data Links, Communications and Test Systems.

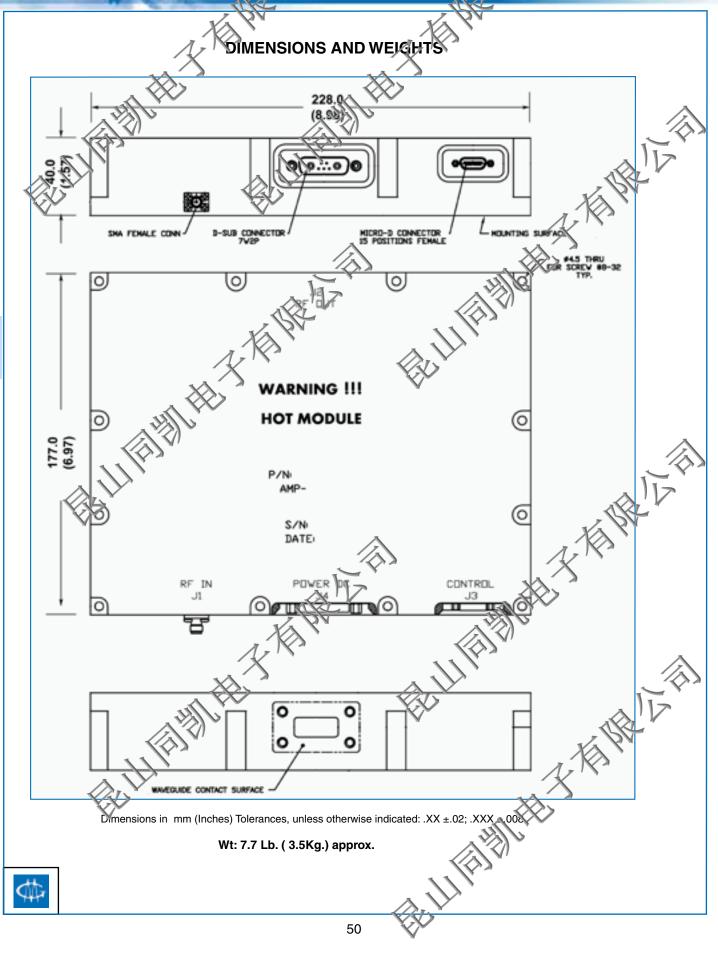
Following please find the basic block diagram of the microwave section. It is a sists of an input section with preamplifier stages and an power amplifier output section. The output section consists of summation of 6 amplifiers.

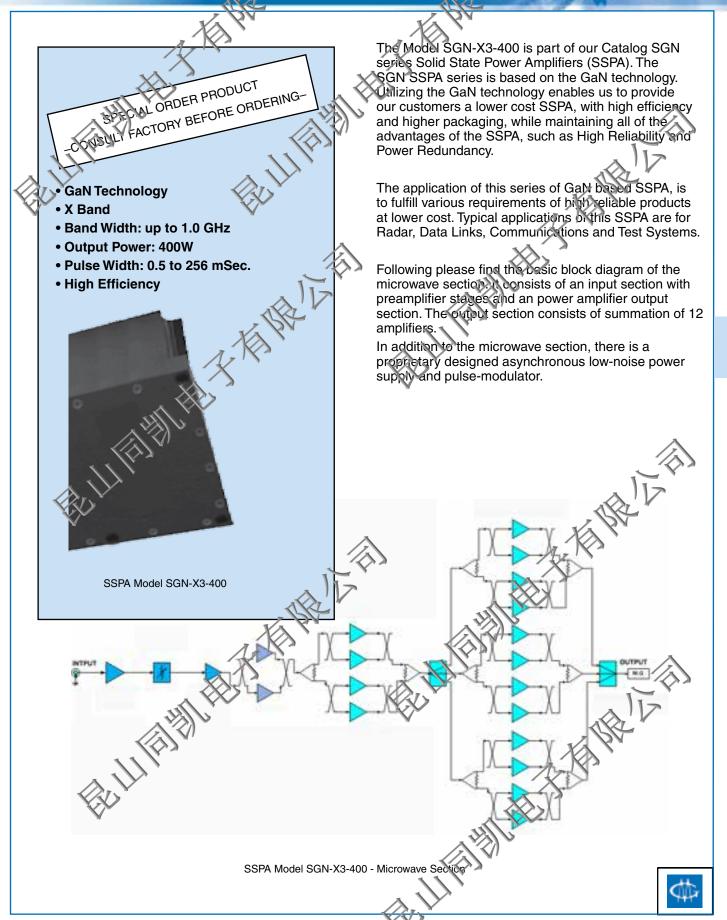
In addition to the microwave section, there is a proprietary designed asynchronous low-noise power supply and pulse-modulator.

最加加加加

提加斯斯斯

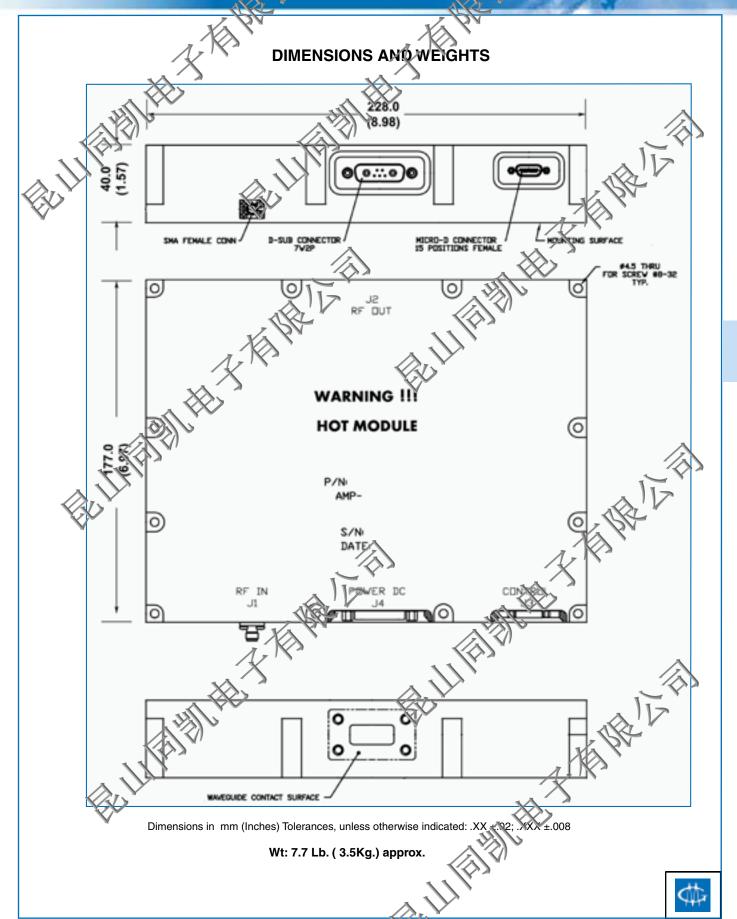
SSPA Model SGN X3-200


MAIN SPECIFICATION


A		
. 🔆	PARAMETER	SPECIFICATION
Me	MODEL	SGN-X3-200-12
1 3/h	Frequency Range (Criz)	X band
1.1	Center Frequency (GHz)	12
1.2	Bandwidth, (MHz) min.	100
2	Peak Saturated Output Power, min. (W)	250
2.1	Amplitude Flatness, PTP, dB max.	1
2.2	RF Out Amplitude Droop @ Pulse Width of 100 µSec, (dB), max.	1 1
3	Output Load VSWR	
3.1	For Max. Output Power, max.	7.2:1
3.2	No Damage	2:1
4.1	Large Signal Gain, typ. (dB)	55
4.2	Small Signal Gain, typ. (dB)	70
4.2	Input RF Drive (dBm)	-1 to +5
5	Putse Width (μs)	0.04 to 100
6	Duty Cycle, max (%)	15
	PRF (kHz), max.	40
1/8,7	Input Supply Voltage (V)	22 to 36
8.1	Average Input Current @ 28V, max (A)	10
8.2	Reverse Voltage Protection	Yes
9	DC Power Consumption, typ. (W)	280
10	Efficiency, typ. (%)	20
11	Tx enable external control ¹	X
11.1	Rise/Fall Time, typ. (nsed.)	150
11.2	Time Delay, typ. (nsec	200
12	Operating Temperature Range (°C)	-10 to +70
13	Other Typical Environmental	Airborne
	Specifications	
13	Dimensions L x W x H (inc)	9.0 x 7.0 x 1.6
13.1	Din ensions L x W xH (mm)	228.6 x 177.8 x 40.2
14	We ght, max. (Kg.)	3.5
15	Connectors	XX
15.	RF In	SMA Female
15.2	RF Out	Waveguide WR90
15.3	Power Supply	D-\$087W2
15.4	Control	Micro-1015 pin female

Note

A drain switching in order to decrease power consumption



MAIN SPECIFICATION	W.	Nr.		
PAPAMETER SPECIFICATION	1			
PAPAMETER SPECIFICATION	SCDA Ma	4616	CN WO 400	
PAPAMETER SPECIFICATION	SSPA INIO	ger S	GIV-1/3-400	
PARAMETER SPECIFICATION			Valva	St.
PARAMETER SPECIFICATION		N		
PARAMETER SPECIFICATION		X		
MODEL SGN-X3-400 1		***	MAIN SPECIFICATION	
MODEL SGN-X3-400 1	Tu.			
MODEL SGN-X3-400 1				
1 Frequency Range (GHz) X band 1.1 Bandwidth, (MHz), min. 1,000 2 Peak Saturated Output Power, min. (W) 400 2.1 Average Output Power min. (W) 80 2.2 Amplitude Flatness, PTP, dB typ. 1 2.3 RF Out Amplitude Droop @ Pulse Width of 250-35c, (dB), typ. 3 Output_seav_SWR 3.1 For Max_Output Power, max. 1.2:1 3.2 No pamage 2:1 4.1 barge Signal Gain, min. (dB) 60 Input RF Drive (dBm) -5 to +1 Pulse Width (µs) 0.2 to 150 6 Duty Cycle, max (%) 20 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection Yes 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 22 11 Operating Temperature Range (*C) Air to +70 12 Other Typical Environmental Specifications 13 Dithensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W x H (mm) 228.6 x 177.8 x 40.2			PARAMETER	SPECIFICATION
1.1 Bandwicth, (MHz), min. 1,000 2 Peak Saturated Output Power, min. (W) 400 2.1 Average Output Power, min. (W) 88 2.2 Amplitude Flatness, PTP, dB typ. 1 2.3 RF Out Amplitude Droop @ Pulse Width of 250 63e, (dB), typ. 3 3 Output Laov SWR 3.1 For Max Output Power, max. 1.2:1 3.2 No Damage 2:1 4.1 Darge Signal Gain, min. (dB) 60 input RF Drive (dBm) -5 to +1 Pulse Width (µs) 0.2 to 150 6 Duty Cycle, max (%) 20 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection Yes 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 22 11 Operating Temperature Range (*C) 1 to +70 12 Other Typics Environmental Specifications 13 Dithensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W x H (mm) 228.6 x 177.8 x 40.2			MODEL	SGN-X3-400
2 Peak Saturated Output Power, min. (W) 400 2.1 Average Output Power, min. (W) 80 2.2 Amplitude Flatness, PTP, dB typ. 1 2.3 RF Out Amplitude Ivoop @ Pulse Width of 250 vsec. (dB), typ. 3 Output Laco VSWR 3.1 For Max Output Power, max. 1.2:1 3.2 No Damage 2:1 4.1 Large Signal Gain, min. (dB) 60 Input RF Drive (dBm) 5to +1 Pulse Width (µs) 0.2 to 150 6 Duty Cycle, max (%) 20 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty 20 Cycle, max (A) 8.2 Reverse Voltage Protection Yes 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 22 11 Operating Temper ature Range (°C) 10 to +70 12 Other Typica Environmental Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W x H (mm) 228.6 x 177.8 x 40.2		1	Frequency Range (GHz)	X band
2.1 Average Output Power min. (W) 2.2 Amplitude Flatness PTP, dB typ. 2.3 RF Out Amplitude [Droop @ Pulse Width of 200 sec. (dB), typ. 3 Output Laad VSWR 3.1 For Max. Output Power, max. 1.2:1 3.2 No Damage 2:1 4.1 Large Signal Gain, min. (dB) 60 Input RF Drive (dBm) -5 to +1 Pulse Width (µs) 0.2 to 150 6 Duty Cycle, max (%) 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 10 Efficiency, (%) 1/D 11 Operating Temperature Range (°C) 12 Other Typics Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W x H (mm) 228.6 x 177.8 x 40.2 AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.1	Bandwidth, (MHz), min.	1,000
2.2 Amplitude Flatness, PTP, dB typ. 2.3 RF Out Amplitude Droop @ Pulse Width of 250 use. (dB), typ. 3 Output Laad SWR 3.1 For Max. Output Power, max. 3.2 No Damage 4.1 Large Signal Gain, min. (dB) 60 Input RF Drive (dBm) -5 to +1 6 Pulse Width (µs) 0.2 to 150 6 Duty Cycle, max (%) 20 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 11 Operating Temperature Range (°C) 12 Other Typics Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W x H (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		2	Peak Saturated Output Power, min. (W)	400
2.3 RF Out Amplitude Droop @ Pulse Width of 250 Uses (cfB), typ. 3 Output Leavy SWR 3.1 For Max Output Power, max. 1.2:1 3.2 No Lamage 2:1 4.1 Large Signal Gain, min. (dB) 60 Input RF Drive (dBm) -5 to +1 Pulse Width (µs) 0.2 to 150 6 Duty Cycle, max (%) 20 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection Yes 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) 1/0) 22 11 Operating Temperature Range (°C) 10 0 +70 12 Other Typics Environmental Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W x H (mm) 228.6 x 177.8 x 40.2		2.1	Average Output Power min. (W)	80
Width of 250 Gec, (dB), typ. 3 Output Laav SWR 3.1 For Max Output Power, max. 1.2:1 3.2 No Damage 2:1 4.1 Large Signal Gain, min. (dB) 60 Input RF Drive (dBm) -5 to +1 6 Duty Cycle, max (%) 20 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 11 Operating Temperature Range (°C) 12 Other Typics Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W x H (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		2.2	Amplitude Flatness, PTP, dB typ.	11/1
3 Output Lead VSWR 3.1 For Max Output Power, max. 3.2 No Camage 4.1 Large Signal Gain, min. (dB) 60 Input RF Drive (dBm) 5 to +1 6 Duty Cycle, max (%) 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ 11 Operating Temperature Range (°C) 12 Other Typical Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W x H (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		2.3	RF Out Amplitude Droop @ Pulse Width of 250 uSec. (dB), typ.	Ϋ́Υ
3.1 For Max. Output Power, max. 3.2 No Damage 2:1 4.1 Large Signal Gain, min. (dB) 60 Input RF Drive (dBm) -5 to +1 6 Pulse Width (µs) 0.2 to 150 6 Duty Cycle, max (%) 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 11 Operating Temperature Range (°C) 12 Other Typical Environmental Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W x H (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		3		7
3.2 No Lamage 4.1 Large Signal Gain, min. (dB) 60 Input RF Drive (dBm) -5 to +1 6 Pulse Width (µs) 0.2 to 150 6 Duty Cycle, max (%) 20 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 11 Operating Temperature Range (°C) 12 Other Typical Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W x H (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		3.1		1.2:1
Input RF Drive (dBm) 5 Pulse Width (µs) 6 Duty Cycle, max (%) 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 11 Operating Temperature Range (°C) 12 Other Typical Environmental Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W x H (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		3.2		2:1
6 Pulse Width (µs) 0.2 to 150 6 Duty Cycle, max (%) 20 7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection Yes 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 22 11 Operating Temperature Range (°C) 10 to +70 12 Other Typicst Environmental Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W x H (mm) 228.6 x 177.8 x 40.2 AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental	Ì	4.1		60
7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection Yes 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ 11 Operating Temperature Range (°C) 10 to +70 12 Other Typics Environmental Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W x H (mm) 228.6 x 177.8 x 40.2		12/2	Input RF Drive (dBm)	-5 to +1
7 PRF (kHz), max. 40 8 Input Supply Voltage (V) 20 to 36 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection Yes 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ 22 11 Operating Temperature Range (°C) 10 +70 12 Other Typical Environmental Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W xH (mm) 228.6 x 177.8 x 40.2 AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental			Pulse Width (μs)	0.2 to 150
8 Input Supply Voltage (V) 8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 10 Efficiency, (%) typ. 11 Operating Temperature Range (°C) 12 Other Typical Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W x H (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		6	Duty Cycle, max (%)	20
8.1 Average Input Current @ 20% Duty Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 11 Operating Temperature Range (°C) 12 Other Typicst Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W x H (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		7	PRF (kHz), max.	40
Cycle, max (A) 8.2 Reverse Voltage Protection 9 DC Power Consumption, typ. (W) 10 Efficiency, (%) typ 11 Operating Temperature Range (°C) 12 Other Typical Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W xH (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		8	Input Supply Voltage (V)	20 t0 36
8.2 Reverse Voltage Protection Yes 9 DC Power Consumption, typ. (W) 400 10 Efficiency, (%) typ. 29 11 Operating Temperature Range (°C) 43 to +70 12 Other Typical environmental Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W xH (mm) 228.6 x 177.8 x 40.2 AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental	V*	8.1		20
10 Efficiency, (%) typ 11 Operating Temperature Range (°C) 12 Other Typical Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W x H (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		8.2		Yes
11 Operating Temperature Range (°C) 12 Other Typical Environmental Specifications 13 Dimensions L x W x H (inc) 13.1 Dimensions L x W xH (mm) AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental	Ì	9	DC Power Consumption, typ. (W)	400
12 Other Typic St Environmental Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W xH (mm) 228.6 x 177.8 x 40.2 AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		10	Efficiency, (%) typ	250
Specifications 13 Dimensions L x W x H (inc) 9.0 x 7.0 x 1.6 13.1 Dimensions L x W xH (mm) 228.6 x 177.8 x 40.2 AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental	Ī	11	Operating Temperature Range (°C)	+70
13 Dimensions L x W x H (inc) 13.1 Dimensions L x W xH (mm) 228.6 x 177.8 x 40.2 AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental		12		Airborne
AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental				
AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environmental	_			
Option No. Description G09 Guaranteed to meet Environmental	L	13.1	Dimensions L x W xH (mm)	228.6 x 177.8 x 40.2
Option No. Description G09 Guaranteed to meet Environmental			, ,	- 182 "
Option No. Description G09 Guaranteed to meet Environmental		(4)		XX.
Option No. Description G09 Guaranteed to meet Environmental		WIVALL AL	RI E OPTIONS	1 1 1 1
G09 Guaranteed to meet Environmental				× ^
Ratings	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•	•	A (XX)
			Ratings	THE STATE OF THE S
			<	(A)\(\frac{1}{2}\)
	dt-		11	1
	444			es e
52			52	
и			য	

ABLE OPTIONS

SSPA Model SGN-X4-20/50

The Model SGN-X4-50 is part of our Catalog SGN series Solid State Power Amplifiers (SSPA). The SGN SSPA series is based on the GaN technology. Utilizing the GaN technology enables us to provide our customers a lower cost SSPA, with high efficiency and higher packaging, while maintaining all of the advantages of the SSPA, such as High Reliability and Power Redundancy.

The application of this series of GaN based SSPA, is to whill various requirements of high reliable products at lower cost. Typical applications of this SSPA are for Radar, Data Links, Communications and Test Systems.

展別開展

SPECIAL ORDER PRODUCT

- GaN Technology
- C or X Band,
- Band Width: up to 1,000 MHz
- Output Power: up to 50W, CW
- High Efficiency

SSPA Vocal SGN-X3-50

SSPA Model	SGN-X4-20/50
	A STATE OF THE STA
MAIN SPECIFICATION	
	A
PARAMETER SPECIFIC	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
MODEL SGN-X4-20	SGN-X4-50*
Frequency Range (GHz) X Bar	
2 Bandwidth, (MHz), 1011 500 3 Output Power, (W)	NA PV
3.1 Peak Saturated, Typ. 20	50
3.2 Peak Saturated, Min. (W) 16	40
3.3 Average Same as	Reak
3.4 Amplitude Flatness, PTP, dB yp	V
4 Output Load VSWR Any Load	
5 Large Signal Gain, min. (viB) 46	50
6 Input RF Drive (dBm) 0 to	
7 Pulse Width Up to	CW
8 Input Supply Voltage (V) 8.1 32V, max (A) 2.5	8.0
8.1 32V, max (A) 2.5 8.2 12V, max. (A) 1.0	1.0
9 Power Consumption, max (W) 92	268
10 Efficiency, (%) typ. 25	25
Operating Temperature Range (°C) -30 to	+70
12 Dimensions L x W x H (inc) 3.6 X 3.4 X 0.67	7.25 X 4.75 X D
12.1 Dimensions L x W xH (mm) 91.44 X 86.36 X 17.02	184.15 X 120.05 X 25.4
* Special Product, Minimum order applies	N N
	\
	_
	~//\
	THE IT IS
	A KARLINA
	大杨展江
	表。 (1)

^{*} Special Product, Minimum order applies

SSPA Model SGN-K1-07

Kratos's Ku-band Solid State Power Amplifier (SSPA) is the lightest, most efficient and compact product for embedding into airborne and microflyaway SATC OM terminals. The Ku-band SSPA is based on Gal technology to provide high output power efficiency with significant reductions in heat sink and airflow requirements to meet the size weight and performance requirements for integration into any flyable or mobile SATCOM terminal. The Ku-band SSPA outline can be accommodated to meet customer's specific requirements. Antenna interface is based on a WR62 to minimize transmission loss.

SPECIAL ORDER PRODUCT

- GaN Technology
- Ku Band
- Band Width: 500 MHz
- Output Power: 7W, CW
- High Efficiency

SSPA Model SGN-K) 07

展別展場

Custom SSPA

Most of the Solid State Power Amplifiers (SSPA) supplied by General Microwave have been custom designed to meet specific system requirements. These SSPAs have been fully tested and qualified to meet severe environmental requirements. The following examples represent some of the typical applications of General Microwave's SSPA product line: a) Airbonne RADARS

- Weather RADARS
- c) RADARS for Home Land Security (HLS)
- d) Seekers for short range missiles
- e) Test Equipment

Certified and fully oxarified for airborne application.

Religible 1 **Custom SSPA**

Certified and fully qualified for missile application.

THE LEASE OF THE PARTY OF THE P 最加州和州

Airborne GaN SSF **TRANSCEIVER**

HARLE STATE OF THE STATE OF THE

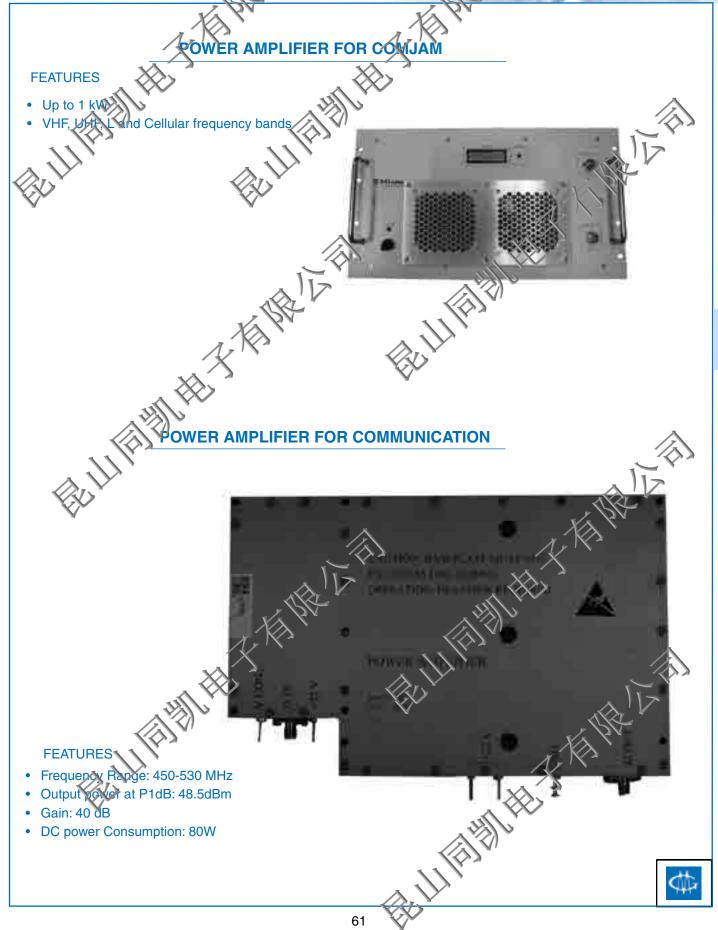
是川原規則

4

Custom SSPA

		11.			Custom SSPA
					Custom 55PA
	/	, A			
	X		×>,	X	
	THE STATE OF THE S	,	SPECIAL SEP	As	
	In addition to the Catalo	og SSPAs, we are	e offering the follow	ving SSPAs as spe	ecial catalog products.
	77,		7,	1	
	Model	SPA-X1 4000	SPA-KU1-400 ⁽¹⁾	SPA-KU2-100 ⁽¹⁾	, All Piv
	Frequency Range (GHz)	8.5 to 10.9	13.5 to 17.0	13.5 to 17.0	X
	Bandwidth, max (MHz)	400	500	500	
	Peak Saturated Output Power, min (W)	400	350	100	
	Average Output Power (W)	100	87.5	25	
	Pulse Width (μs)	0.2 - 60	0.5 – 250	0.5 – 250	
	Duty Cycle, max (%)	25	25	25	\wedge
	PRF (ki\z)	1 - 600	1 – 600	1 – 600	
	Input Supply Volvage (V)	22 to 60	22 to 32	22 to 60	
	Operating Temperature Range (°C)		-40 to +85		**
	Dimensions, approx. mm (inches)	280 x 140 x75 (11 x 5.5 x 2.9)	283 x 110 x 75	229 x 178 x 30.5 (9 x 7 x 1.2)	
'	(1) Minimum Order Ap	oplies 1			<i>(</i>)
	,	***			
	a ill		,		
		V 1			A KARLEY
					XX.
	\$\times_{\time				

Custom - Power Amplifiers


FEATURES

- 展別原期 Radio Telephone Apple
 - Band-Width One Octave
 - ..nearity

- 期根据 最加加加州 Frequency Range: 1350-2700 MHz
- Output power of P1dB: 45dBm
- Gain: 44 dB
- DC power Consumption: 110W

Custom - Power Amplifiers

Custom - Power Amplifiers

FEATURES

- VHF, UHF, L and S frequency band
- Option for Integrated Power Sapply (MIL-704 and 461)
- Designed For Frequency Hopping
- Digital Modulation Vigut
- ALC Power ControlHigh Efficiency

展別開開

4

Solid State Control Components

The introduction of the PIN diote more than 45 years ago has led to the development of a large family of RF and microwave control components, including switches, attenuators, modulators, and phase shifters that have become essential elements of most modern microwave systems. Today, the types of PIN diodes available to the component designer is quite extensive and permits a choice of electrical characteristics such as junction capacitance, minority carrier lifetime, reverse voltage breakdown, saturation resistance and resistance vs. current law as well as mechanical format when selecting a diode for a particular application. While a complete treatment of the PIN diode will not be presented here, some of the more important relationships in diode characteristics are described

The unique property of the PIN diode that makes it particularly suitable for control component use is that, in its useful operating frequency range, it behaves as a current variable resistor in its forward blased state. Depending upon the diode construction, this resistance can vary from as low as a lew tenths of an ohm when the diode is fully ON to as high as 10,000 ohms with zero bias current applied. The PIN diode displays this behavior because, unlike P-N junction diodes, a thin layer of Intrinsic material is inserted between heavily dopen lavers of P and N material. When DC current lows through the diode, a stored charge is created in the I layer which establishes the conductance of the diode. The charge is in the form of holes and electrons which have a finite recombination time. As long as the period of any time-varying current is sufficiently short compared to this recombination time, there is effectively no modulation of the diode conductance and, ignoring parasitic reactances, the diode behaves as a pure resistor.

If we define a transition frequency f₀ as

$$f_0 = \frac{1}{2\pi t}$$

Where t is the minority carrier lifetime.

then for frequencies significantly below for the PIN diode will behave as a P-N junction, rectifying the applied a-c signal. For frequencies well above for the diode will behave as a linear resistor. The range of t varies from as low as 19 asec to as high as 5 µsec, and correspondingly (varies from about 16 MHz to 32 kHz.

The decree to which the PIN diode will rectify the a-c signal and thereby generate harmonic power depends not only on the minority carrier lifetime but upon the ratio of the a-c current to the applied d-c current. In general, as the applied signal power rises and the operating frequency decreases, diodes with long minority carrier lifetimes and high bias current are required for satisfactory operation. Unfortunately, such diodes exhibit relatively long switching time and low modulation rates.

When one uses a PIN diode in the microwave frequency range, parasitic reactar ces will have first order effects. The most important of these is the diode junction capacitance which limits the diode impedance in its back biased state. For low frequency diodes in chip format, employing relatively large junction areas, the junction capacitance is of the order of 0.2 to 1.0 pF. At the other extreme, beam lead diodes exhibit the lowest available junction capacity, ranging from 0.02 to 0.08 pF. For high frequency multi-throw switches, beam lead diodes are frequently employed at the common junction because of their small physical size and low junction capacity. Even with a capacitance as low as 0.02 pF, at a frequency of 18 GHz, the diode will have an impedance of only about 450 ohms in its back biased state due to this reactance. In similar manner, the intrinsic diode inductance as well as that of the connecting ribbons have a significant effect upon the frequency related behavior of the PIN diods

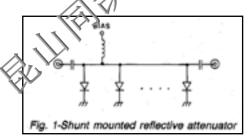
The diode saturation resistance presents a loss mechanism in the RF and microwave circuit This resistance can vary from a few tenths of an of min a chip diode, to as high as 5 ohms in a low-capacity beam lead diode. In general, there is an inverse relationship between diode junction capacity and saturation resistance. Therefore, in high frequency applications, where low capacity is generally required for best isolation and/or impedance match, higher insertion loss generally arises due to the loss attributed to the diodes.

In the sections that follow more detailed discussions are presented of the circuit topologies, design tradeoffs and performance characteristics of GMC's families of control components. GMC's large number of custom designs, which have evolved from these products, have not been included because of space limitations. Consultation with the factory is recommended for such requirements.

(1) The reader in erested in more information on this subject should consult one or more of the following references:

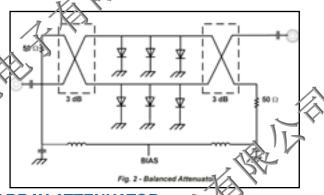
"Microwave Samiconductor Engineering", J.F. White, Van Nostrand Reinhold Company, 1982. "Microwave Semiconductor Control Devices", K.E. Mortenson, Microwave Journal, May 1964, pp. 49-57. "Fundamental Limitations in RF Switching and Phase Shifting Using Semiconductor Diodes" NE Hines, Proceedings of the IEEE, vol.

"Biasing and Driving Considerations for PIN Diode RF Switches and Modulators", Hewlett-Packard Applications Note 914, Jan. 1967.


General Microwave PIN diode attenuators cover the frequency range from 200 Midz to 40 GHz and are available in numerous configurations to permit the user to optimize system performance. Most designs are available with either analog or digital control, operating over occave or multi-octave bands with high or moderate switching speed characteristics.

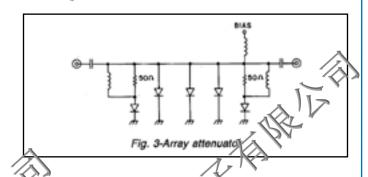
ATTENUATOR TOPOLOGY

GMC PIN Gode attenuators are designed with several different topologies, each of which has been selected to octivize certain performance characteristics. A brief discussion of these various topologies is presented below including a treatment of performance trade-offs.


SHUNT-MOUNTED REFLECTIVE ATTENUATOR

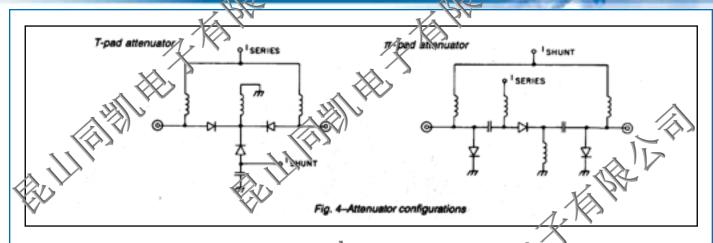
The simplest version of a PIN diode attenuator consists of one or more PIN diodes in shunt with a transmission line as shown in Fig. 1. This design provides a broadband reflective attenuator that can reach very high levels of attenuation, depending upon the number and electrical spacing of the diodes. While it generally has very low insertion loss and can operate at high switching rates, its use others is limited by the very large mismatch it presents in the attenuation state.

BALANCED ATTENUATOR


By placing identical shunt-mounted reflective attenuators between an appropriately connected pair of 3 dB quadrature hybrid couplers, a balanced attenuator is realized (see Fig. 2). The balanced attenuator has all the simplicity of the shunt-mounted reflective attenuator with the added feature of providing low VSWR under all conditions of attenuation. In addition, power handling is improved by 3 dB due to the power split of the input hybrid. This style of PIN diode attenuator offers simplicity, up to 3 to 1 bandwidth, moderately fast speed, and excellent linearity. Balanced attenuators are available from General Microwave covering the frequency range of 0.5 to 40.0 GHz.

ARRAY ATTENUATOR

With the addition of terminating diode elements to the shunt-mounted reflective attenuators of Fig. 1, an attenuator can be realized with low VSWR that can operate over an octave hand (see Fig. 3). By tapering the diode and transmission line impedance and adding multiple transformer sections it is possible to obtain good VSWR and attenuation characteristics over several octaves.


GMC employs array attenuators in a number of custom designs

T-PAD AND π -PAD ATTENUATORS

The broadest frequency coverage available is obtained with some form of T-part ox Π -pad attenuator. These are lumped element circuits which function in the microwave frequency range in essentially the same manner as they do at DC. Attenuation variation is obtained by simultaneously changing the bias current of the series and shunt diodes comprising the pads in a manner that assures constant impedance at all levels. Fig. 4 shows the basic configuration is used by GMC due to the difficulties in realizing sufficiently low stray reactances and short transmission line lengths in π -pad circuits for operation at higher microwave frequencies. Models of these attenuators cover the full frequency range from 0.2 to 13.9 GHz with excellent attenuation flatness and moderate switching speed.

SWITCHED BIT ATTENUATORS

When an attenuator with a fast switching speed and high power handling capacity is required, the only option is to utilize a switched-bit attenuator. This attenuator combines one or more tandem pairs of SP2T switches with a zero loss connection between one pair of outputs and a fixed attenuator inserted in the other (see Fig. 5). In this configuration the PIN diodes are not used as variable resistors, but are switched between their forward and reversed biased states. This allows for much faster switching speed since high speed PIN charles and drive circuitry can be used. In addition, it offers higher power handling capacity since the RF power is absorbed in the fixed attenuator(s), and not in the PIN diodes.

There are some disadvantages to this approach that may imit its usefulness. First, the minimum practical attenuation step size at microwave frequencies is

BIAS CONTROL
ATTENUATION PATH

ATTENUATION PATH

BIAS CONTROL
THRU PATH

Fig. 5-Switched bit attenuator

about 0.5 dB doe to interacting VSWR's as the bits are switched these interactions may lead to a non-monotonic response as the attenuation is changed in increments of one LSB, i.e., the attenuation level may actually docrease when an increasing attenuation step is called for. Second, because of the RF circuit complexity, the cost of this attenuator is usually higher than other approaches. Finally, the incorporation of high speed switches may lead to excess video leakage.

PHASE INVARIANT ATTENUATORS

This specialized class of attenuators has the property that the insertion phase variation is minimized as the attenuation level is changed. A unique too logy is employed by GMC to obtain this performance which is described in detail in a separate technical paper. In all other respects they perform in a manner similar to the balanced attenuators described above.

DRIVER CONSIDERATIONS

All attenuators except for the switched bit variety are available with line arizing driver circuits with either analog or cigital control inputs. In addition, many attenuators are available without the driver for those who choose to provide their own. Most digital attenuators are available with eight-bit TTL control which, for an attenuator with a nominal attenuation range of 60 dB, will provide a resolution of 0.25 dB. Some attenuators are available with a resolution of as low as 0.05 dB. Except for switched-bit resigns, all PIN diode attenuators are analog in nature and thus their resolution is essentially limited by the DAC used in the driver circuit.

The driver circuit includes compensating elements to minimize the variation of attenuator with temperature. It also provides the proper source impedance and switching wave provides to optimize switching speed.

(1) "Broadband Phase Invariant Attenuator", D. Adler and P. Maritato; 1988 INEE MTT-S Digest, pp. 673-676.
To obtain a copy of this paper, please write to
SALES, KRATOS GENERAL MICROWIVE

STROBE/LATCH FEATURE - OPTION 4

It is recommended that when operating the Series 349/H Attenuators with the Strobe/Latch Option -4 feature, the digital control inputs should be in place, with the Latch series a low "(0)" level, before the Attenuator is powered up.

MONOTONICITY

In most applications it is imperative that the attenuator displays monotonic behavior as a function of the control input. Non-monotonic performance can occur in switched bit attenuators when interacting VSWR's are not properly compensated, or in digitally controlled analog attenuators when a non-monotonic condition exists in the MSB of the DAC. All GMC's attenuators are monotonic guaranteed.

HARMONICS AND INTERMODICATION PRODUCTS

All PIN diode control devices (i.e. attelluators, switches and phase shifters) will generate harmonics and intermodulation products to some degree since PIN diodes are non-linear devices. When compared to digital switched-bit designs, analog PIN diode attenuators are more prone to generate spurious signals since the diodes function as current variable resistors and are typically operated at resistance levels where significant RF power is absorbed by the diode.

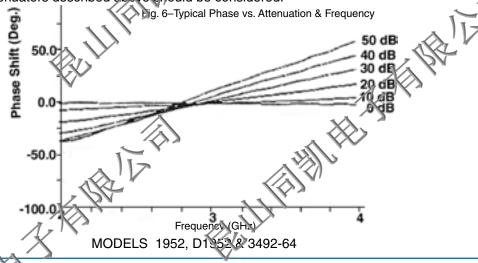
The levels of harmonic and intermodulation products generated by an attenuator are greatly dependent upon its design, the operating frequency, attenuation setting and input power level. Typical performance for a moderately fast attenuator, i.e., 500 nsec switching speed, follows:

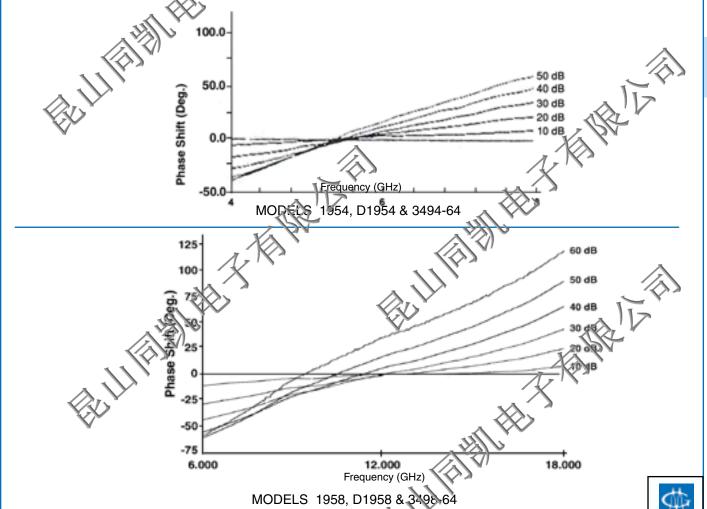
TYPICAL ATTENUATOR INTERCEPT POINTS

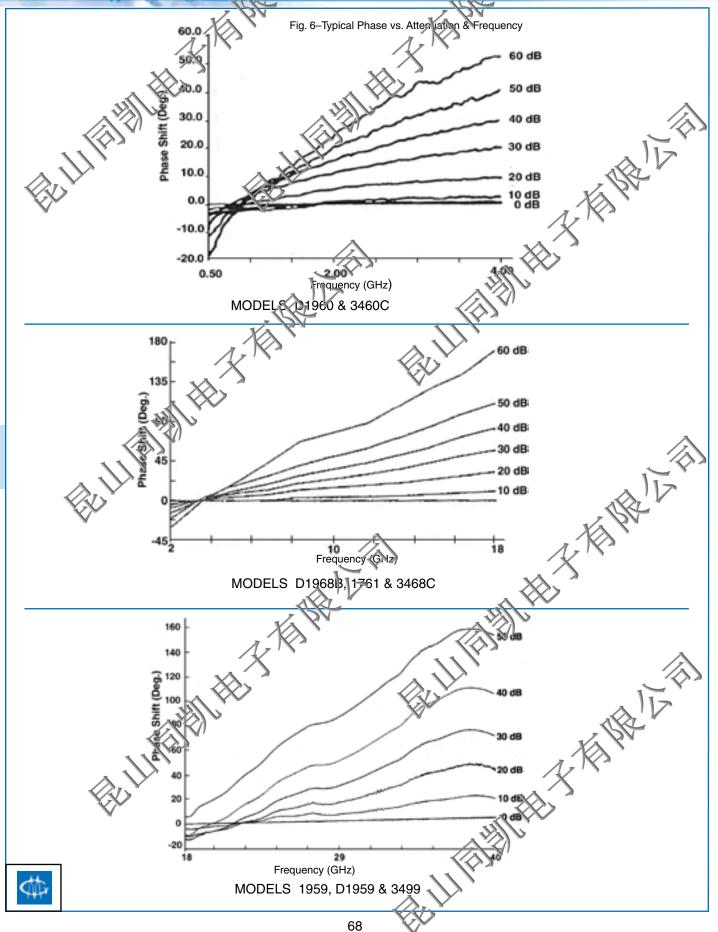
FREQUENCY	2nd ORDER INTERCEPT	3rJ ORDER INTERCEPT
2.0 GHz	+35 d/Sm	+30 dBm
8.0 GHz	+40 d/Bi)	+35 dBm

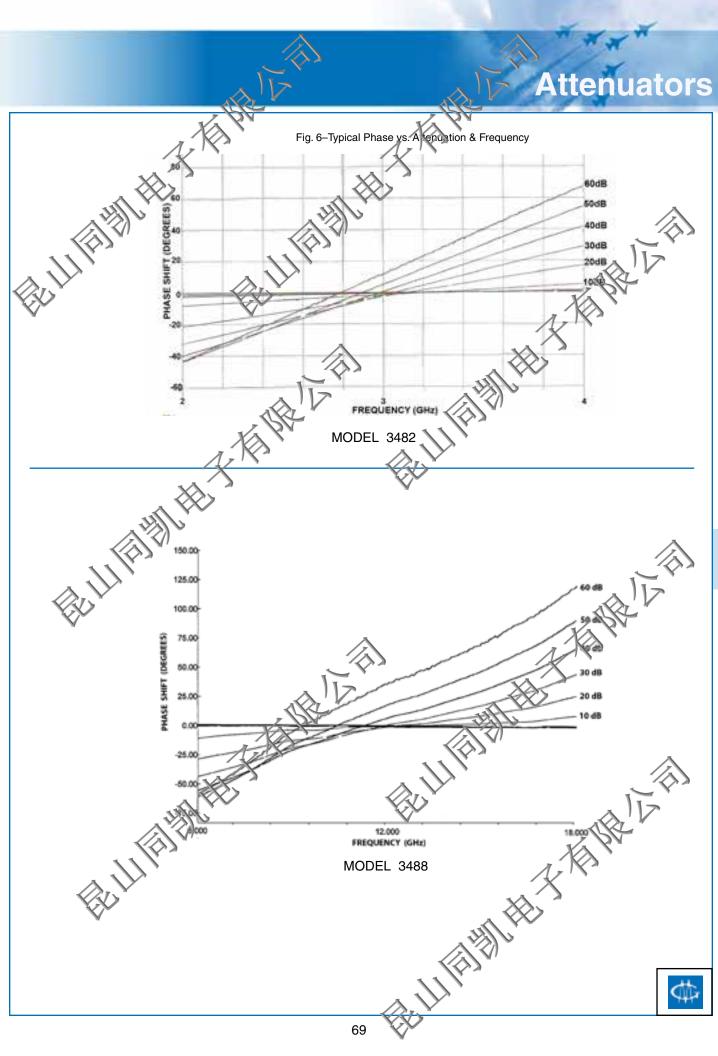
POWER HANDLING

The power handling of a PIN diode attenuator is dependent on its topology, biasing levels, and switching speed. The faster the attenuator, the lower the power handling capability. This catalog specifies both the maximum operating and the maximum survival levels. Maximum operating level is defined as that which will cause an out of specification condition. The survival levels are generally rependent on the maximum ratings of the semiconductors in the attenuator. Please consult the factory for special applications requiring higher operational power levels than those listed in this catalog.


限加州和


川原期 提入




PHASE SHIFT vs. ATTEMOATION

All attenuators exhibit a variation in phase shift with attenuation level (AM/PM modulation). Fig. 6 shows typical phase shift variation as a function of attenuation for a number of GMC attenuator models. The phase shift is attributable to both the stray reactance of the PIN violes as well as the lengths of transmission line interconnecting the diodes. While it is possible to minimize the AM/PM by careful design, it is not possible to eliminate it entirely. Where minimum change of phase with attenuation is a critical parameter, the use of GMC's line of Phase invariant Attenuators described above should be considered.

DEFINITION OF PARAMETERS

MEAN ATTENUATION is the average of the maximum and minimum values of the attenuation over the specified frequency range for a given control signal.

ATTENUATION FLATNESS is the variation from the mean attenuation ever over the specified frequency range. This is usually a function of the attenuation level, and is expressed in ± dB.

ATTENNATION ACCURACY is the maximum deviation of the mean attenuation from the programmed attenuation value expressed in dB when measured at + 23 ± 5°C.

TOTAL ACCURACY is the sum of all the effects which contribute to the deviation from the programmed attenuation value. It includes the effects of attenuation accuracy, frequency variation and temperature, as shown in Fig. 7

SWITCHING SPEED(2)

The following are the standard definitions of switching speed, as shown in Fig. 8:

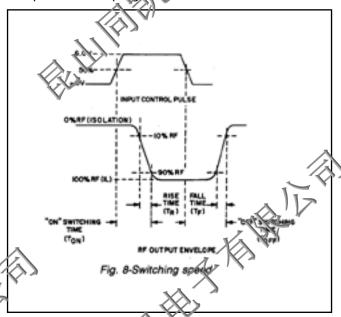
Rise Time is the transition time between the 10% and 90% points of the square-law detected RF power when the unit is switched from full OFF to full ON.

Fall Time is the transition between the 90% and 10% points of the square-law detected RF power when the unit is switched from tall ON to full OFF.

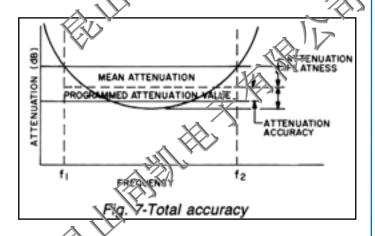
unit is switched from full ON to full OFF.

On Time is the transition time between 50% of the input control signal to the 90% point of the square-law detected RF power when the unit is switched from full OFF to full ON.

Off Time of the transition time between 50% of the input control signal to the 10% point of the square-law detected RF power when the unit is switched from full ON to full OFF.


Note: Depending on the attenuator topology, there are differences in the behavior of the switching characteristics that may affect system performance. Switching speed is only specified to the 90% or 10% points of the detected RF signal, but the time the attenuator takes to reach final attenuation value or switch between different attenuation levels may be significantly longer.

MODULATION BANDWIDTH


Small Signal Bandwidth: With reference to a modulation frequency of 100 Hz and a modulation depth of ±3 dB at a quiescent level of –6 dB, the nequency at which the modulation depth decreases by 50% as measured with a square-law detector.

Large Signal Bandwidth: With reference to a modulation frequency of 100 Hz and a 100% modulation depth at a quiescent level of –6 dB, the frequency at which the modulation depth ascreases by 50% as measured with a square-law detector.

TEMPERATURE COEFFICIENT is defined as the average rate of change of attenuation over the full operating temperature range of the unit under fixed bias conditions. It is expressed in dB/°C. Note that the attenuator temperature coefficient may vary with both temperature and programmed attenuation level.

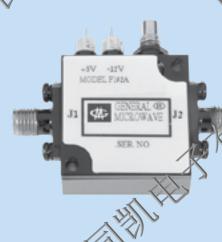
(2) For units without in vegrate a drivers, the specifications apply to conditions when the attenuator is driven by an appropriately shaped switching waveform.

Attenuator Selection Guide

	ATTENUATORS A	ND MODU	ATORS		
		1	•		
	UENCY BANGE (GHz)	ATTENUATION AANGE (dB)	MODEL	PAGE	COMMENTS
0.2 0.5 1.0	4.0 8.0 12.4 18 40	XX			
J.Kr.	CONTINUOUSLY VARIABLE, CURREN		SORPTIVE ATTEN	UATORS	<u> </u>
0.5		80	1950A	-	
((\(\) \(\) \(\)	-2	60	1951		1-1
111 2	4	60	1952		
2	5.2	60	1953	76	The "
(V)	48	60	1954] /6	Single control
V	510	60	1955	7	
	612	60	1956	1/1	
	818	60	1958		
	18-40	50	1959	327	
CONTINUOUSLY	Y VARIABLE, VOLTAGE CONTR			DRPTIVE A	TTENUATORS
0.5	4 2	60	D19608	- 11VL /	I ENGALONO
0.5		60	01961B	-	
	8	60	D1962B	84	
	- / (/)	60	D1968B	-	
	18	\			
0.51		80	D1950A	-	
1	*2	60	D1951	_	Integrated driver
2	2	60	D1952		Integrated driver and RF section
, v	5.2	60	D1953	80	
	48	60	D1954		
11/1	510	60	D1955		(4)
	612	60	D1956		11-
(215)	818	60	D1958		
	1840	50	D1959	329	-181
VOL	TAGE CONTROLLED, PHASE II	VARIANT, LI	NEARIZED AT	TENUAT	BS
	26	32	D1972	17	(3
	411	32	D1974	87	Integrated driver and RF section
	618	32	D1978		and Hr Section
	HIGH SPEED ALSORP			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
0.2	18	80	51924	73	Integrated driver and RF section
	1, 12		(4)		
		1	111		
	XX ~		Y		
					. 112
	11/1/1/1	V			A V
4				-/	Bloom
	Y 2			X	×,
	*			17	
Rell!					
V.V			2	Ø> ~	
*			/ In		
			THE PERSON NAMED IN		
		44	1/hrs		
		,	7),		dt.
			<i>y</i>		777
		71			
		· · · · · · · · · · · · · · · · · · ·			

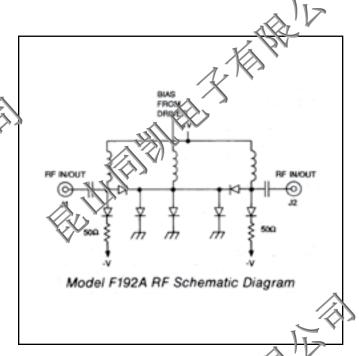
Attenuator Selection Guide (cont.)

				- X	_
	TENUATO	IDS VIIL	MODII	LETINDS	(cont)
\sim	1 LIVOAIC	IND AIND			(COIIL.)
1	9-4		_//	1 %	•


PREQUENCY FANGE (GHz) 1.2 0.5 1.0 2.0 8.0 12.4 18 40	ATTENUATION RANGE (db)	MIN STEP SIZE (dB)	MODEL	PAGE	COMMENTS
DIGWALLY PROGRAMMABLE ABSOR	VE ATTE	NUATORS	, ULTRA-BR	OADBA	ND
18	60	1	3250A	90	Integrated driver and RIF section
DIGITALLY PROGRAMMABLE ABSORE	PTIVE ATTE	NUATORS,	MULTI-OCT	AVE BA	ME
<u> </u>	60	0.06	3460C	V	BA
0.58	60	0.06	3461C	7 93	integrated driver
28	60	0.06	3462C /	X	and RF section
218	60	0.06	3468C		
DIGITALLY PROGRAMMABLE, PHASE INV				CTAVE	BAND
26	32	0.125	3472		Integrated driver
411	32	0.125	3474	96	and RF section
6	32	0.125	3478		
DIGITALLY PROGRAMMABLE MINIATURIZE			ENUATORS,	OCTAV	E BAND
2—4	60	0.25	3482, 3482H		
2.6———5.2	60	0.25	3483, 3483H		Integrated driver
4———8	60	0.25	3484, 3484H	99	Integrated driver and RF section
12	60	0.25	3486, 3486H		
818	60	0.25	3488, 3488H		
MINIATURE DIGITALLY CONTROLLE	D, PIN DIODI	Ì	ATORS		Integrated driver
18	60	0.5	1761	120	1
DISITALLY PROGRAMMABLE ABS				E BAND	15
2	80	0.03	3491, 3491H		
24	80	0.03	3492, 3492H	7	Blo
2.6———5.2	80	0.03	3493, 3493H	X	
48	80	0.03	3494, 3494H	104	Integrated driver and RF section
510	80	0.03	3495, 3495H		and HF section
6——12	80	0.03	3496, 34961	>	
818	64	0.03	3498 34981		-
18 149	50	0.03	\$190	331	
	4	0.03	>> "		
8 18 18 18 18 18 18 18 18 18 18 18 18 18		~	_		A CONTRACTOR OF THE PROPERTY O
		Ĉ	圳湖		
*	72				

Wodel F192A Non-Reflective Ultra-Broadband High-Speed Pulse Modulator

• 0.2 to 18 Ghz frequency range


- 80 dB isolation
- Low VSWR and insertion loss
- Small size, light weight

Pulse Modulator Model F192A

展別開測提了。

The Model £192A is a high-speed non-reflective PIN diode pulse modulator with integrated driver. Operating over the instantaneous frequency range from 0.2 to 18 GFIz, it provides a minimum isolation of 80 dB from 0.5 to 18 GHz, and 70 dB below 0.5 GHz. The RF design consists of an arrangement of shunt and series diodes in a microstrip integrated circuit transmission line as shown in the schematic diagram below.

The currents required to switch the unit ON or OFF and simultaneously maintain a bilateral 50-ohm impedance match in both states are provided by the integrated driver, which is controlled by an external logic signal.

Model F192A Specifications

RERFORMANCE CHARACTERISTICS

~ *		X				
W/)		FREQUENCY (GHz)				
	0.2	0.5	2.0	8.0	12.4	
CHARACTERISTIC	to	to	to	to	to	
<u> </u>	0.5	2.0	8.0	12.4	18.0	
Min Isolation (dB)	79	80	80	80	80	1
Max Insertion Loss (dB)	2.0	2.0	2.5	3.0	3.5	
VSWR (ON and OFF)	1.5	1.5	1.75	2.0	2.0	1
	7> [*]				1/2/2/	
V					(()	
				A	71	
				- 1	>	
Speed		Control	Characterist	ics XX		

Switching Speed

Rise Time 10 nsec. max. Fall Time...... 10 nsec. max. ON Time 30 nsec. max. OFF Time 15 nsec. max

Power Handling Capability

Without Performance

Degradation...... 500 mW w or peak Survival Power 1Waverage, 10W peak (1 usec max. pulse width)

Power Supply Requirements

+5V ±5%, 90 mA

Control Characteristics

Control Input

Impedance.... TL, advanced Schottky,

bne-unit load. (A unit load is 0.6 mA sink current and 20 µA

source current).

Logic "0" (-0.3 to +0.8V) for

switch ON and logic "1" (+2.0 to +5.0V) for switch OFF.

Model F192A Specifications

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Range -65° to +110°C

Non-Operating Temperature

Range -65° to +125°C

95%)

Shock...... MIL-STD-202F Method

213B, Cond 3 (75G, 6 msec)

Vibration MIL-STD-202F, Method

204D, Cond. B (.06" double amplitude or 15G, whichever

is less)

Altitude MIL-STD-202F, Method

105C, Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-2027 Wethod

107D, Cond. A, 5 cycles

AVAILABLE OPTIONS

Option No. Description

7

10

33

3 SMA female control connectors

Two SMA male RF connectors

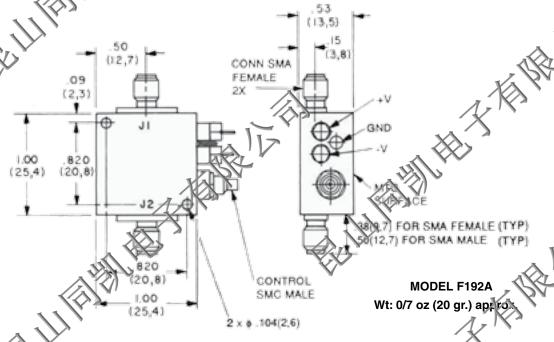
9 Inverse control logic; logic "1" for switch

ON and logic "0" for switch OFF

One SMA male (J1) and one SMA female (J2) RF connector

EMI filter solder-type control terminal

48 +5, –15V operation


64A SMB male control connector

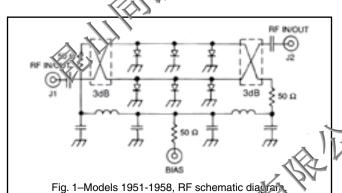
G09 Guarantee in meet Environmental

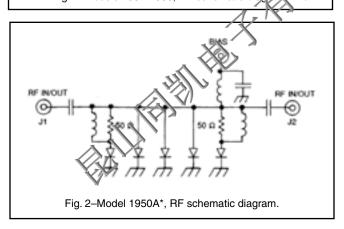
Ratings

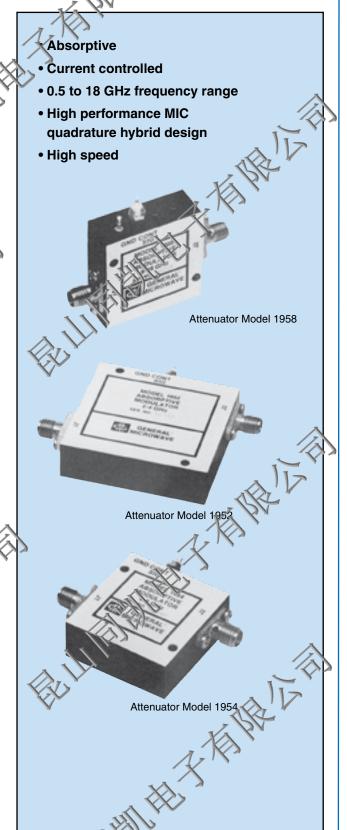
G12 RoFIS Compliant

DIMENSIONS AND WEIGHT

Dimensional Tolerances, unless otherwise indicated: XX ±.02; .XXX ±.008




Series 195 Octave-Eand PIN Diode Attenuator/Modulators


SERIES 195

Series 195 current-controlled attenuator/modulators provide small size with greate; than octave-bandwidth performance at low cost. All models except the 1950A* provide a minimum of 60 dB of attenuation with fall times of 20 nsecolar, and rise times ranging from 25 nsec for the 1951 and 1952 to 125 nsec max for the 1956 and 1958. The 1950A* provides a minimum of 80 dB of attenuation with a fall time of 50 nsec max and a rise time of 250 nsec max. These characteristics make this series suitable for a wide range of applications including level setting, complex amplitude modulation, pulse modulation and high-speed switching. The eight models in the Series 195 encompass a frequency range from 0.5 to 18 GHz. All models except the 1950A* are capable of extended bandwidth operation. typically 3:1, with only moderate degradation in performance at the band edges.

As shown in figures 1 and 2 below, the RF circuit employed in all models except the Model 1950 at uses two shunt arrays of PIN diodes and two quadrature hybrid couplers. The quadrature hybrids are of a unique GMC microstrip design which are integrated with the diode arrays to yield a minimal package size. The RF circuit employed in the Model 1950A* uses one shunt array of PIN diodes with input and output impedance matching crouits.

*Model 1950A is a special-order product. Consult factory before ordering.

Series 195 Specifications

			AT ME				UP TO
HANGE (GHz)	LOSS (dB)	MAX. VSWR	(0 dB	20 dB	40 dB	60 dB	80 dB
).5 – 1.0	1.4	2.0	> 0.3	0.8	1.7	2.2	3.2
1.0 – 2.0	1.3		0.3	0.8	1.5	1.6	\ /
0.75 – 2.25 (1)	1.4	2.0	0.5	1.4	3.0	3.5	\
2.0 - 4.0	1.5	1.5	0.3	0.8	1.5	1.6	
1.5 – 4.5 ⁽¹⁾	16	2.0	0.5	1.4	3.0	3.5	181
2.6 - 5.2	1.7	1.6	0.3	0.8	1.5	1.6	
1.95 – 5.85 ⁽¹⁾	1.8	2.1	0.5	1.4	3.0	3,5	13
4.0 - 8.0	2.0	1.7	0.3	0.8	1.5	1,6	Y
$3.0 - 9.0^{(1)}$	2.1	2.2	0.5	1.4	3.0	3,5	\ \ \
5.0 – 10.0	2.2	1.7	0.5	0.9	1.5	1.6	/\
3.75 – 11.25 ⁽¹⁾	2.3	22	0.7	1.4	1881	3.5	/ \
6.0 – 12.0	2.3	1.8	0.7	1.0		1.6	
4.5 – 13.5 (1)	2.4	2.2	0.9	1.5	3.0	3.5	
8.0 – 18.0	2.54	1.8(2)	0.7	1.0	1.5	1.6	/ \
6.0 - 18.0 (1)	2.50	1.8(2)	0.9	1.5	3.0	3.5	/
	2.0 - 4.0 1.5 - 1.25 (1) 2.0 - 4.0 1.5 - 4.5 (1) 2.6 - 5.2 1.95 - 5.85 (1) 4.0 - 8.0 3.0 - 9.0 (1) 5.0 - 10.0 3.75 - 11.25 (1) 6.0 - 12.0 4.5 - 13.5 (1) 8.0 - 18.0	FREQUENCY RANGE (GPz) (DSS (dB) (DSS (dB) (DSS (dB) (DSS (DSS (DSS (DSS (DSS (DSS (DSS (DS	Name	NA GE LOSS MAX. VSWR C S C C	NA GE LOSS (dB) WAX. VSWR VSWR O d3 20 dB	NAME NAME	NANGE CH2 CH

- (1) Specifications for the extended frequency ranges are typical.
- (2) Except from 16-18 GHz whe e insertion loss is 3.5 dB max and VSWR is 2.0 max.
- (3) For attenuation steps of 10 dB or more.

PERFORMANCE CHARACTERISTICS

1950A* Al/ other units	80 dB 60 dB
Monotonicity	

Phase Shift See page 65 Temperature Effects See Fig. 3

Power Handling Capability

Mean Attenuation Range

Without Performance Degradation

1950A*, 1951........... 10 mW cw or peak. All other units.......... 100 mW cw or peak

Survival Power (from -65°C to +25°C see Fig. 4 for higher temperatures)

All units...... 1 W average,

25W peah (1 µsec max

*Model 1950A is a special order product. Consult factory before ordering.

Switching Speed

Bias Current for Maximum Attenuation

1950A*..... 5 to 35 mA All other units..... 15 to 70 mA

(3) For attenuation steps of 10 dB or more.

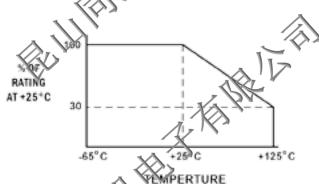


Fig. 4-Series 195 power derating factor

Series 195 Specifications

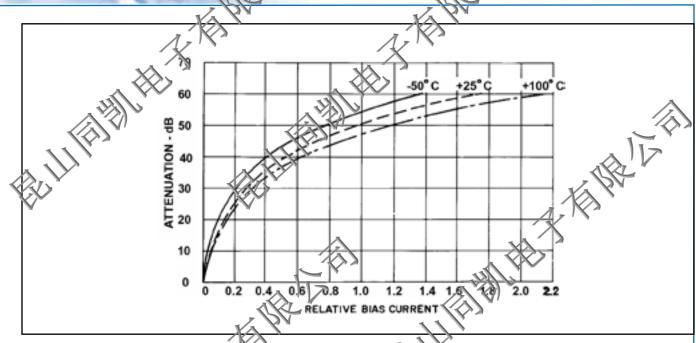
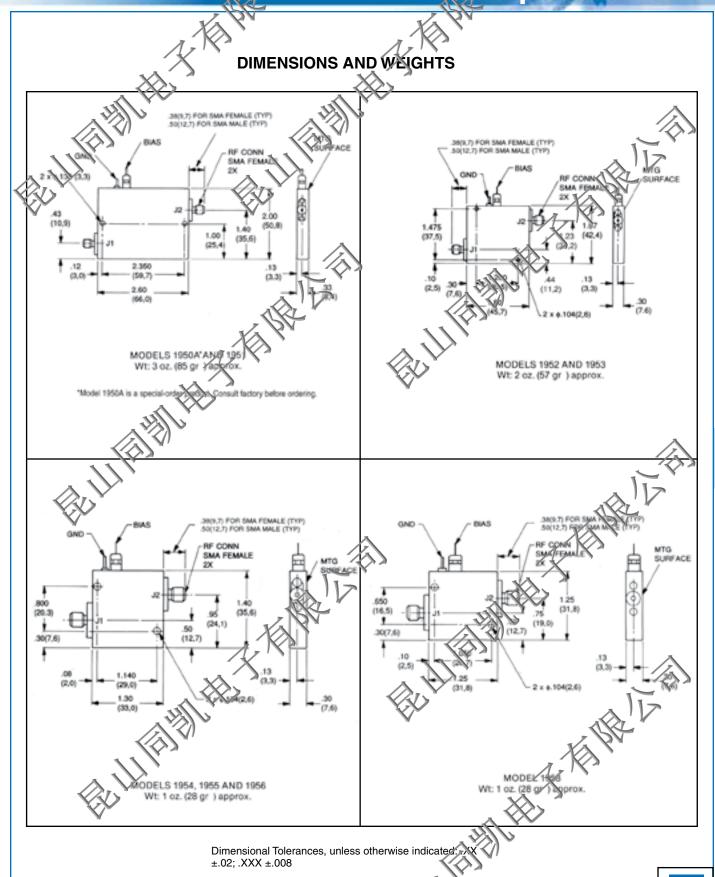


Fig 3-Series 195, typical effects of temperature on attenuation

OPTION (G09)	MINONMENTAL RATINGS
--------------	---------------------

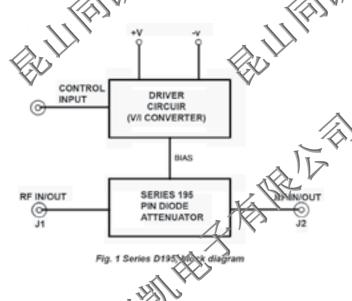
Operating Temperature Range	−54°C to +125°C
Non-Operating	
Temperature Range	–65° to +125°C
Humicity	MIL-STD-202F, Method 103B, Cond. B (96 hrs. at 95%)
Shock	MIL-STD-202F, Method 213B, Cond. B (75G, msec)
Vibration	MIL-STD-202F, Mothod 204D, Cond. B (.06") double amplitude or 15G, whichever is less)
Altitude	MIL-STD-202F, Method 1050, Cond. B (50,000 ft.)
Temp. Cycling	Mik-STD-202F, Method 107D, Cond. A, 5 cycles

AVAILABLE OPTIONS


Option No.

Option No.	Description
3	SMA female bias connector
7	Two SMA male RF connectors
10	One SMA male (J1) and coe SMA
	female (J2) RF connector
64	SMC male bias connector
64A	SMB male bias connector
G09	Guaranteed to meet Environmental
	Ratings
G12	RoHS Compliant
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4	((x)) "
11	N (a)
	. 17
~	1
	V DV
	, 1
	/ \
	× >
	J. J
	(K)
\triangle , \vee	
XX	
W	

Description


Series 195 Specifications

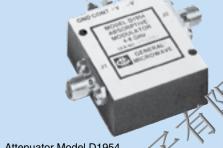
Series D195 Octave Band PIN Diode Attenuator/Modulators

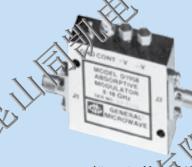
SERIES D195

The Series D195 voltage-controlled linearized attenuator/modulators are integrated assemblies consisting of a Series 195 unit and a hybridized driver circuit which provious a nominal transfer function of 10 dB per volt. (See tigule 1 below.)

All of the Series D195 units except the D1950A* exhibit fall times of 20 nsec max and rise times of 1.5 µsec max for attenuation steps of 10 dB or more. For smaller excursions, the fall times can increase to several hundred nsec, while the rise times remain essentially unchanged. In applications where a rapid return to insertion loss from any level of attenuation is required, Option 59 is available. With this option, an external pulse is applied to trigger a high-speed reset circuit, and recovery times of 200 nsec max are obtained. Where use of an external reset pulse as described above is not feasible, an internal reset option (Option 58) is available which will automatically reset the unit to insertion loss within 200 nsec for a step of 50 dB or more.

The fall and rise time specifications for the D1950A* are 500 nsec max and 10 uses max, respectively. Options 58 and 59 are not available for this model.


*Model D1950A is a special-order product. Consult factory before ordering.


- Linearized
- Frequency range: 0.5 to 18 GHz
- High performance MIC quadrature hybrid design
- High speed

Attenuator Model D1955

Attenuator Model D1954

Attenuator Model

ALL UNITS IN THIS SERIES ARE EQUIPPED

WITH INTEGRATED ON VERS

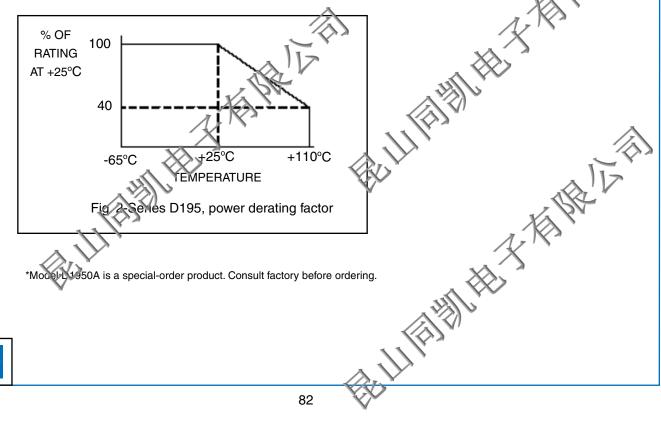
		~			<u> </u>			
	FREQUENCY			AT MEA	MAX. FL N ATTEN	LATNESS		UP TO
MODEL	RANGE (GMz)	LOSS (dB)	MAX. VSWR	10 AB	20 dB	40 dB	60 dB	80 dB
D1950A	3 .5 – 1.0	1.5	2.0	0.3	0.8	1.7	3.0	3.6
D1951	1.0 – 2.0	1.7	155	0.3	0.8	1.5	1.6	\ /
DIST	0.75 – 2.25 ⁽¹⁾	1.8	2.0	0.5	1.4	3.0	3.5]\ _/
D 1952	2.0 - 4.0	2.0	1.5	0.3	0.8	1.5	1.6	1
1932	1.5 – 4.5 ⁽¹⁾	2001	2.0	0.5	1.4	3.0	3.5	1 /2/
D1953	2.6 - 5.2	2.0	1.6	0.3	0.8	1.5	1.8	
ופוט	1.95 – 5.85 (1)	2.3	2.1	0.5	1.4	3.0	3.5	
D1954	4.0 - 8.0	2.6	1.7	0.3	0.8	1.5	1.6	\/
D1954	3.0 - 9.0 (1)	2.7	2.2	0.5	1.4	3.0	3,5	l X I
D1955	5.0 - 10.0	2.8	77	0.5	0.9	136	1.6	/\
ופוט	3.75 – 11.25 ⁽¹⁾	2.9	22	0.7	1.4	3(0)	3.5	/ \
D1956	6.0 – 12.0	2.9	1.8	0.7	1.0	3.5	1.6	/ \
D 1930	4.5 – 13.5 (1)	3.6	2.2	0.9	7.5	3.0	3.5	/ \
D1058	8.0 – 18.0	3.00	1.8(2)	0.7	10	1.5	1.6]/ \
D1958	6.0 – 18.0 (1)	$3.0^{(2)}$	1.8(2)	0.9	1.5	3.0	3.5	/

(1) Specifications for the exter ded frequency ranges are typical.
(2) Except from 16-18 Gh₂ where insertion loss is 4.0 dB max and VSWR is 2.0 max.

(2) Except from 16-17 GHz with a first from 10ss is 4.0 db max an	u vovin is 2.0 iliax.
	ON Time
PERFORMANCE CHARACTERISTICS	D1950A*10 µsec max
	All other units1.6 µsec max
Mean Attenuation Range	Fall Time
D1950A*80 dB	D1950A*500 nsec max
All other units60 dB	All other units30 nsec max
Accuracy of Attenuation	Rise Time
0-30 dB±0.5 dB	D1950A*10 us ac max
>30 to 50 dB±1.0 dB	All other units
>50 to 60 dB±1.5 dB	
>60 to 80 dB±2.0 dB	Nominal Control Voltage Characteristics
(D1950A* only)	Range <u>Operating</u> <u>Maximum</u>
MonotonicityGuaranteed	D1950A*
Phase Shift See page 65	All other units $0 \text{ to } +6V \pm 15V$
	Transfer Function10 dB/volt
Temperature Coefficient±0.025 dB	Input Impedance10 kW
Power Handling Capability	
Without Performance Degradation	Modulation Bandwidth
D1950A*, D1951	Small Signal
All other units100 mW cw or peak	D1950A*25 kHz
Survival Power (from −55 ℃ to +25°C;	All other units500 kHz
see figure 2 for higher temperatures)	Large Signal
All Units1W average	D1950A*5 kHz
25W peak (1 µsec max	All other units50 kHz
pulse width)	Power Supply
/ A _ Y	Requirements12V ±5%, 100 mA
Switching Characteristics	−12V ±5%, 50 mA
OFF Time	Power Supply
D1950A*600 nsec max	RejectionLess than 0.1 dB/volt
All other units100 nsec max	change in either supply

*Model 1950A is a special-order product. Consult factory before grazing.

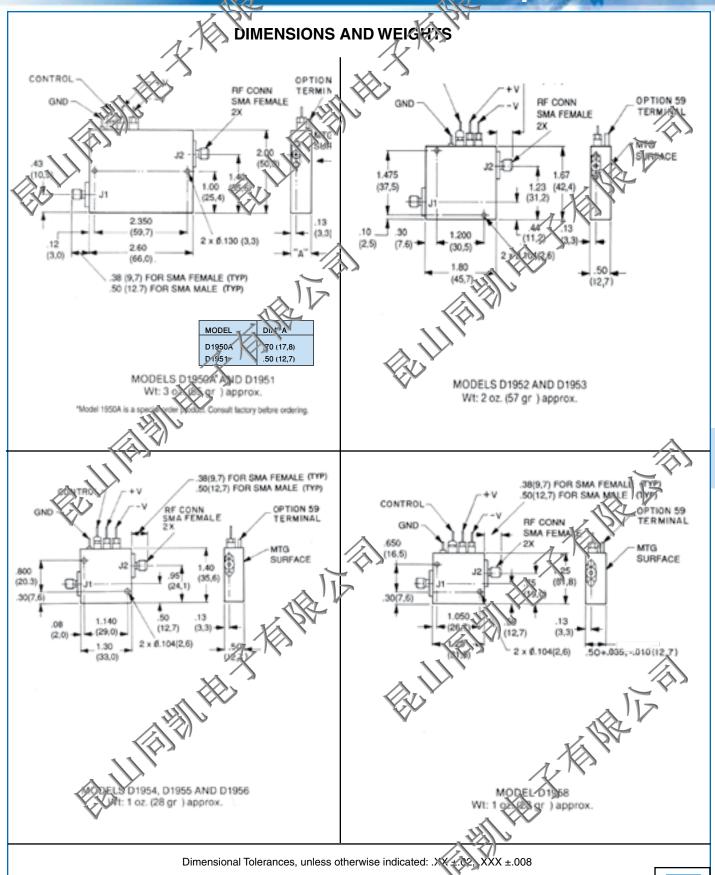
change in either supply


Specifications

OPTION (G09) ENV	ROTHENTAL RATINGS	AVAILAB	LE OPTIONS
Operating Temperature		Option No.	Description
Range		3	SMA female control connector
Non-Operating Tempera		XX 7	Two SMA male RF connectors
Range Humidity	65° to +125°C MIL-STD-202F, Method	10	One SMA male (J1) and one SMA female (J2) RF connector
Charles	103B, Cond. B (96 hrs. at 95%) MIL-STD-202F, Method	58	Internally-generated reset to insertion loss (not available on D1950A) ^[1]
Shock	213B, Cond. B (75G, 6 msec)	59	Externally-triggered reseated hisertion loss (not available on D1950A) ^{(2) (3)}
Vibration	MIL-STD-202F, Method 204D, Cond. B (.06" double amplitude or 15G, whichever	61	20 dB/volt transfer function with 0 to +3V control signal input (+4V for the D1959A*)
	is less)	62	±15 volt operation
Altitude	MIL-STD-202F, Method	64	SMC male control connector
	105C, Cond. B (50,000 ft.)	64A	SMB male control connector
Temp. Cycling	MIL-STD-202F, Meinod 107D, Cond. A, 5 cycles	G09	Guaranteed to meet Environmental Ratings
	N. K.	G12	RoHS Compliant

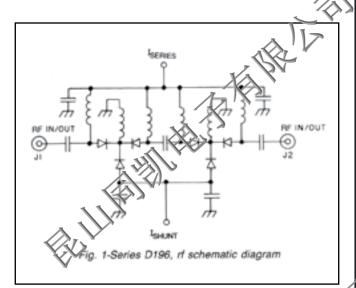
(1) Where use of an Option (a) external reset pulse (see note 2 below) is not feasible, this option is available which will automatically sense the slope and magnitude of the control signal and reset the unit to the insertion loss state within 200 nsec for a step of 50 d3 or more.

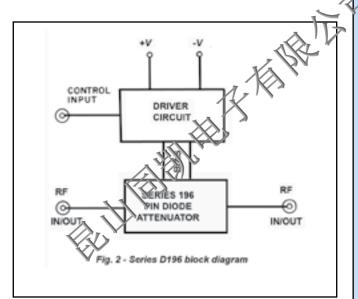
(2) An external terrorral is provided for the user to apply a fast (10 nsec max rise time) positive-going 3-volt pulse at least 0.5 usec wide to accide ate the return of the attenuator to the insertion loss state with the simultaneous lowering of the control signal to the 2e/3 voltage level. This reset can be accomplished within 200 nsec.


(3) The input impedance of units equipped with Option 59 is a circuit equivalent to approximately 50 pF in series with a parallel combination of 100 pF and 1000 ohms.

*Model 11950A is a special-order product. Consult factory before ordering.

Series D195 Specifications




D196 Series Multi-Octave PIN Diode Attenuators

The D196 Series is a family of N(n-) eflective voltage variable 60 dB PIN Diode Attenuators covering the frequency range from 0.5 GHz to 18 GHz in four overlapping multi-octave bands.

Each model in the Series is equipped with an integrated driver which controls the attenuation level at the rate of 10 dB/volt.

The RF circuit consists of two wide-band, T-pad attenuator sections connected in tandem. The driver circuit, which consists of a voltage-to-current converter and inearizing network, furnishes the proper series and shunt currents to control the attenuation value at the specified rate while simultaneously maintaining a bilateral match. See figs. 1 and 2.

• Attenuation range: 60 dB

• Linear control: 10 dB/volt

Low insertion loss

Non-reflective

Attenuator Model D1968B

All units in this series are equipped with integrated drivers

D196 Series Specifications

PERFORMANCE CHARACTERISTICS

	CHARACTERISTIC	MODEL D1960B*	MODEL D1961B	MODEL D1962B*	MODEL D1968B
	Frequency Range (GHz)	0.5-4	0.5-8	2-8	2-18
	Mean Attenuation Range (dB)	60	60	60	60
	Insertion Loss (dB) (max)	2.7	2.5 (0.5-4 GHz) 3.2 (4-8 GHz)	32	
	VSWR (max)	1.8	1.8	1.8	2.0
1	Flatness Up to 20 dB 40 dB 60 dB	± 0.5 dB ± 0.75 dB ± 1.0 dR	± 0.75 dB ± 1.0 dB ± 1.5 dB	± 0.75 dB ± 1.0 dB ± 1.5 dB	± 1.0 dB ± 1.25 dB ± 3.0 dB

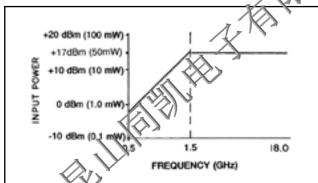
Mean Attenuation Range Accuracy of Attenuation 0-20 dB 20 to 40 dB 40 to 60 dB	±1.0 dB ±1.5 dB
Monotonicity	Guaranteed
Phase Shift	See page 66
Temperature Coefficient	±0.02 dB/°C
Power Handling Capability	
Without Performance Deg	radation
All Units	Up to 50 mW cw or
	peak (see Fig. 3)
Survival Power	
All Units	2 W average or peal
V	from -65°C to +25°C (see Fig. 4 for higher temperatures)

Switching Characteristics

Nominal Control Collage Characteristics

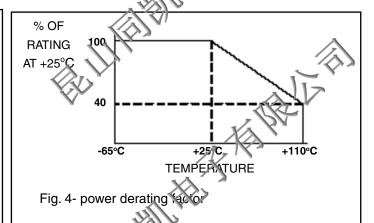
Range	
Operating	
Maximum	±15V
Transfer Function	10 dB/volt
hput Impedance	10 kW

Modulation Bandwidth


Small Signal	20 kHz
Large Signal	5 kHz

Power Supply

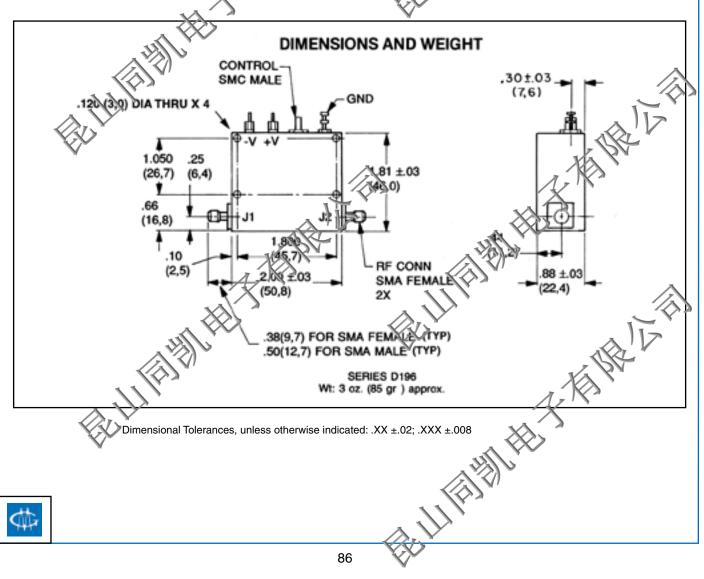
Requirements	.+12V ±5%	, 80 m <i>K</i>
-	-12V + 5%	50 mA


Power Supply

Rejection	Less then 0.1 dB/volt
•	change in either
	supply

ON Time1.0 µsec max OFF Time0.5 µsec max

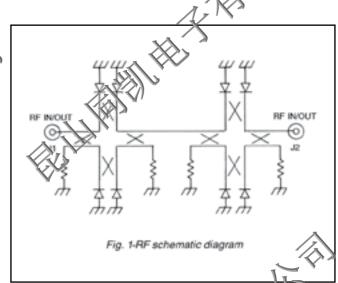
Fig. 3- Series D196, maximum peak and average operating power without performance degradation

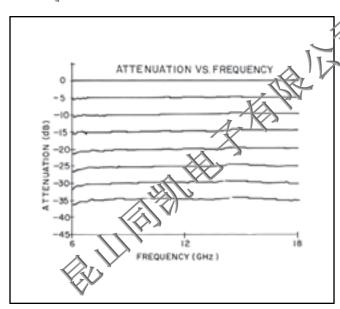


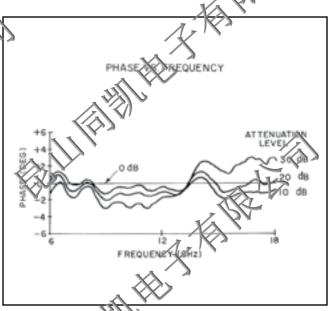
*Special-order product. Consult factory before ordering.

Series D196 **Specifications**

V	X K.
AVAILAR	OPTIONS
Option No.	Description
3	SMA female control connectors
	Two SMA male RF connectors
10	One SMA male (J1) and one SMA
	female (J2) RF connector
33	EMI filter solder-type control terminal
61	20 dB/volt transfer function with 0 to +3V
	control signal input
62	±15V Operation
64 A	SMB male control connector
G09	Guaranteed to meet Environmental
	Ratings
G12	RoHS Compliant
	THIS IN THE STATE OF THE STATE
_	(K)
1	///
	3 7 10 33 61 62 64A G09




Series D197 Voltage Controlled Phase Invariant Attenuators



The Series D197 voltage controlled PIN diode attenuators offer essentially phase free operation over a wide dynamic range in multi-octave frequency bands between 2 and 18 GHz. The attenuators utilize a unique double balanced arrangement of diodes and quadrature couplers to achieve the phase independent attenuation characteristic. Excellent temperature stability is maintained by employing a self-compensating biasing scheme. See Fig. 1.

TYPICAL PERFORMANCE

Series D197 Specifications

MODEL	D1972	D1974	D1978
Frequency Range (GHz)	2-6	4-11	6-18
Mean Attenuation Hange	- Illi	32 dB	
Insertion Loss (Max)	4 dB	5 dB	7 dB
VSWR (Max)	2	.0	3.0
Accuracy of Attenuation		± 0.5 dB	
Amplitude Flatness 0 to 20 dB > 20 to 32 dB	± 0.4 dB ± 0.6 dB	± 0.4 dB ± 0.8 dB	£ 0.8 dB ⁽¹⁾ ± 1.3 dB ⁽¹⁾
Monotonicity	/2	Guaranteed	
Phase Shift 0 to 20 dB > 20 to 32 dB	± 4°	± 4° ± 8	± 5° ± 10°
Control Voltage	7	0-3.2 V	
Control Input Impedance	A	10 kW	
Transfer Function		10 dB/V	
On Time, Off Time	V	250 nsec	
Temperature Coefficient 0 - 20 dB > 20 - 32 dB		.01 dB/°C .03 dB/°C	
Max. RF Power input (Operating)		100 mW	
Max. B. Power Input (Survival)		0.5 W	
Harmonic Distortion @ Pin = +10 dBm	-40 dBc	−50 dBc	-50 XSc
Power Supply Requirements		+15V ±5% @ 200 m/ -15V ±5% @ 120 m/	

SPECIFICATIONS WITH EXTENDED RANGE OPTION (\$100 45)

	NA.		
Mean Attenuation Range		45 os	
Accuracy of Attenuation 0-20 dB		±1.0 dB ± 2.0 dB ± 3.5 dB	a liz
Amplitude Flatness 0 to 20 dB > 20 to 32 dB > 32 dB	± 0.4 dB ± 0.6 dB ± 1.5 dB	± 0.4 dB ± 0.8 dB ± 1.5 dB	± 0:3 (dB ⁽¹⁾ + 1.3 dB ⁽¹⁾ ± 2.0 dB
Phase Valuation 0 to 20 dB > 20 to 32 dB > 32 dB	± 4° ± 8° ± 15°	± 4° ± 8° ± 20°	± 5° ± 10° ± 30°

⁽¹⁾ Except from 8-18 GHz, flatness is ± 0.5 dB up to 20 dB, ± 1.0 dB up to 32 dB.

Specifications

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

-54° to +110°C Range.....

Non-Operating

Temperature Range –65° to +125°C

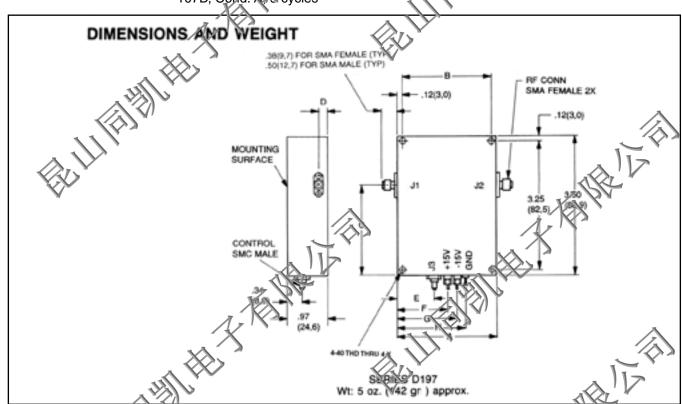
.. MIL-STD-202F, Method **Humidity** 103B, Cond. B (96 brs 95%)

MIL-STD-202F, Method Shock 213B, Cold. B (75G, 6

msec)

Vibration.. MIL-STD-202F, Method

204D, Cond. B (.06" double amplitude or 15G


whichever is less)

Altitude MIL-STD-202F, Method 105C, Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-2027 Method 107D, Cond. A 5 cycles

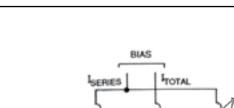
WAILABLE OPTIONS

Option No.	Description
7	Two SMA male RF connectors
10	One SMA male (J1) and one SMA female (J2) RF connector
45	Extended attenuation range to 45 dB
65	±12V operation
G09	Guaranteed to meet Environmental
	Ratings
G12	RoHS Compliant

MODEL	//A	В	С	D	E	F	Ğ	Н
D1972	2.5 (63,5)	2.26 (57,4)	2.28 (57,9)	0.22 (5,6)	0.91 (23,1)	1.25 (37,7)	1.5 (38,1)	1.7 (43,2)
D1974	2.0 (50,8)	1.76 (44,7)	2.43 (61,7)	0.18 (4,6)	0.66 (16,8)	(.0 (25,4)	1.25 (31,7)	1.45 (36,8)
D1978	2.0 (50,8)	1.76 (44,7)	2.58 (65,5)	0.18 (4,6)	0.66 (16.8)	1,0 (25,4)	1.25 (31,7)	1.50 (38,1)

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; XXX ±.008


Model 3250A Ultra-Boadband 6 Bit Digital PIN Diode Attenuator


The Model 3250A digitally programmable attenuator provides excellent performance characteristics over the frequency range of \$2 to 18 GHz. Attenuation levels up to 60 dB are programmable in increments of


The unit is an integrated assembly of a dual T-pad PIN diode attenuator and a driver consisting of a D/A and an I/V Converter. See figures 1 and 2.

The Model 3250A operates as a bilaterally-matched device at all attenuation levels. It is supplied in a compact rugged package.

- Attenuation range: Up to 60 dB
- 6 Bit Binary or BCD programming
- Absorptive
- Guaranteed Monotonicity

Attenuator Model 3250A

Model 3250A Specifications

PERFORMANCE CHARACTERISTICS

Frequency Range	0.2 to 18 GHz
Mean Attenuation Range	
0.2 to 18 GHz	60 dB
Insertion Loss (max.)	
0.2 to 8 CF2	3.5 dB
>8 to 12.4 OHz	4.0 dB
>12.4 to 18 GHz	5.0 dB
VSWR (max.)	
0.2 to 8 GHz	1.75
8 to 18 GHz	2.0

Accuracy of Attenuation

0 to 30 dB	±0.5 dB
>30 to 50 dB	±0.75 dB
>50 to 60 dB	±1.5 dB

Flatness of Attenuation

0 to 30 dB	.±1.0 dB
>30 to 40 dB	.±1.5 dB
>40 to 50 dB	
>50 to 60 dB	.±3.0 🔀

Temperature Coefficient0102 de C max

Power Handling Capability

/ Without Performance	
Degradation	
	peak (see Figure 3)
Survival Power	2W average or peak
(from -65°C to +25°C; s	see
Figure 4 for higher temp	peratures)
witching Time	2 usec may


	1 4
Switching Time	2 µsec max.
_	Positive true binary
	standard or BCD
	(Option 1). For
	complementary code,
	necify Ontion 2

Minimum Attenuation Step ... 1.0 dB

Logic Input

Logic "0" (Bit On)	
Logic "1" (Rit On)	

Power Supply

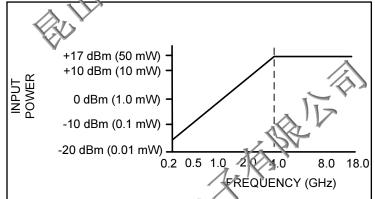


Fig. 3-Model 3250A, maximum peak and average operating power without performance degradation

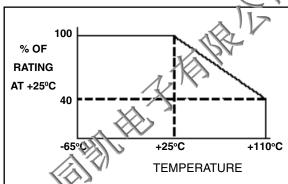


Fig. 4-Model 3250A, survival power derating factor

Model 3250A Specifications

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Range.....-54°G to +110°C

Non-Operating Temperature

Range-65°C to +125°C

Humidity MIL-STD-202F, Method 103E

Cond. B (96 hrs. at 95%)

ShockMIL-STD-202F, Method 213B,

Cond. B (75G, 6 msec)

VibrationMIL-STD-202F, Method 204D,

Cond. B (.06" louble amplitude or 15G, whichever is less)

AltitudeMIL-STD-202F, Method 105C,

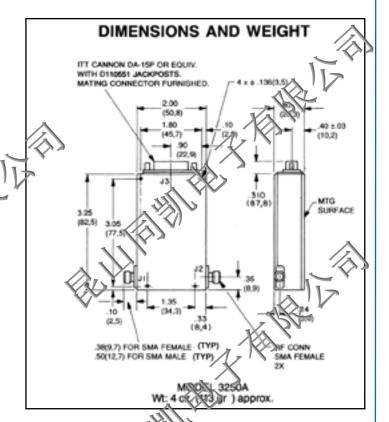
Cond. B (50,000 ft.)

Temp. CyclingMIL-STD-202F, Method 107D

Cond. A, 5 cycles

ACCESSORY FURNISHED

Mating power/logic connector


AVAILABLE OPTIONS

Option No.	Description
	BDC programming (Binary is standard)
2	Complementary programming (positive true is standard)
7	Two SMA male RF connectors
10	One SMA male (J1) and one SMA female (J2) RF connector
5002*	8-Bit Resolution, 1 µsec switching time
G09	Guaranteed to meet Environmental
	Ratings
G12	RoHS Compliant

*Special order product. Consult factory before ordering.

In addition, consult factory for impact on specifications; i.s., VSWR and insertion loss and availability

PIN FUNCTIONS		
PIN NO.	BINARY	BCD (Opt. 1)
2	SPARE SPARE	SPARE SPARE
3	+ 5V	+ 5V
4	DIGITAL &	DIGITAL &
	POWER GND	POWER GND
5	GND	1 dB
6	GND	2 dB
7	1 dB	4 dB
8	2 dB	8 dB
9	4 dB	10 dE
10	8 dB	20 dB
11	16 dB	40 JB
12	32 dB	OPEN (NO
	Im	CONNECTION)
13	+ 15V	>> + 15V
14	-/5	– 15V
15	SPARE	SPARE

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.06

346C Series Multi-Octave 10 Bit Digital PIN Diode Attenuators

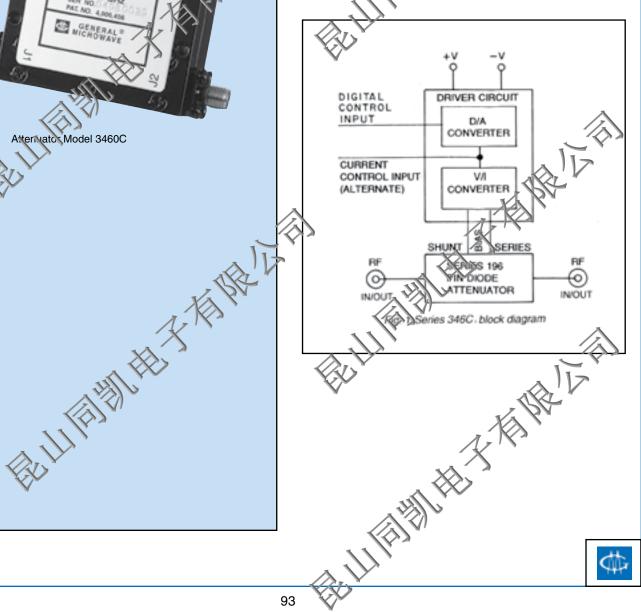
Attenuation range: 60 dB

Programming: 10-Bit binary

• LSE: 0.00 dB

Monotonicity: guaranteed

The 346 Series is a family of Non-reflective PIN diode attenuators, each programmable to 60 dB in attenuation steps as low as 0.06 dB, and covering the frequency range from 0.5 GHz to 18 GHz in four overlapping multi-octave bands.


Each model in the Series comprises an integrated assembly of a dual (current-controlled) PIN diode attenuator, and a driver circuit consisting of a D/A converter and a voltage-to-current converter (see Figure 1 below).

The RF circuit consists of two wide-band, Y-pad attenuator sections in tandem. The levels of series and shunt currents required to maintain a bilateral match at all attenuation levels are provided by the driver.

This arrangement assures monotonicity over the operating band at all levels of attenuation and for any programmed attenuation step.

Attenuator Model 3460C

Series 346C Specifications

PERFORMANCE CHARACTERISTICS

CHARACTERISTIC	MODEL 3460C*	MODEL 346 IC	MODEL 3462C*	MODEL 3468C
Frequency Range (SE2)	0.5-4	0.5-8	2-8	2-18
Mean Attenuation Range (dB)	60	60	60	60
Insertion Loss (dB) (max)	2.5	2.5 (0.5-4 GHz) 3.2 (4-8 GHz)	3.2	4.5
VSWR (max)	1,3	1.8	1.8	3,0
Flatness up to 20 dB	±, 0.5 dB	± 0.75 dB	± 0.75 dB	± dB
40 dB	0.75 dB	± 1.0 dB	± 1.0 dB	± 1.25 dB
V 60 dB	<u> </u>	± 1.5 dB	± 1.5 dB	±3.0 dB

^{*}Special-order product. Consult factory before ordering.

Minimum Attenuation Step ... 9:06 dB⁽¹⁾

Temperature Coefficient	±0.02 dB/ C
Phase Shift	See Page 36
Monotonicity	Guaranteed
40-60 dB	
20-40 dB	±1.5 dB
0-20 dB	±1.0 dB

Power Handling Capability

Without Performance Degradation

All Units	to 50 mW cw or peal
	(see figure 3)

Survival Power All Units

ts2 W average or peak, from -65°C to +25°C (see figure 4 for higher temperatures)

Switching Time

ON Time	1.0 µsec. m	ax.
OFF Time	0.5 µsec. m	ax.

Programming Positive true binary. For complementary code,

specify Option 2. To interface with othe logic families, please connect factory.

Logic "0" (Bit OR5) Logic "1" (Bit ON)	−0.3 to +0.8 V
Logic "1" (Bit SN) (.).	+2.0 to +5.0 V
Input Current	10 µA max.

Nominal Control Voltage Characteristics

Range	0 to 3 mA
Transfer Function	20 dB/mA
Input Impedance	

Power Supply

Requirements	+12V ±5% , 90 mA
	_12\/ ±5% 60 m∆

Power Supply

Rejection	Less than	0.1 d	B/volt ∀
	change in	eithe	supply

(1) The Series 346C attenuators are 10-bit digital at a cators. In order to use this device with a lesser number of bits (lower resolution), the user may simply ground the logic pins for the lowest order unused bits. For example, a Series 346C unit operated as an 8-bit unit would have Pin 15 and Pin 3 connected to ground. All other parameters remain unchanged.

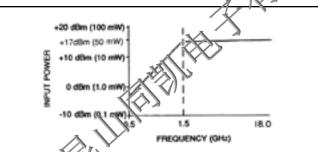


Fig. 3- Series 346C, maximum peak and average operating power without performance degradation

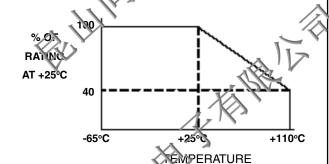


Fig. 4-Model 346C, survival power derating factor

Series 346C Specifications

OPTION (G09) ENVIRONMENTAL RATINGS

Operating	Temperature/	/
Dan		_

Range.....-54°C to +110°C

Non-Operating

Temperature Range -65°C to +125°C

Humidity MIL-STD-202F, Method 103B, Cond. B (90 hrs. at

95%)

msec)

Vibration MIL-STD-202F, Method

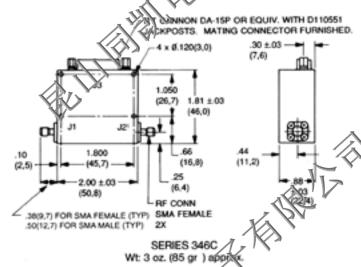
204D, Cond. B (.06" double amplitude or 150

whichever is less)

Altitude MIL-STD-202F, Method

105C, Cond (\$ (50,000 ft.)

Temp. Cycling MIL-STD-202F Method 107D, Cood A, 5 cycles


AVAILABLE OPTIONS

Option No.	Description
2	Complementary programming (logic "0" is bit on)
7	Two SMA male RF connectors
10	One SMA male (J1) and one SMA female (J2) RF connector
62	±15 Volt operation
C38	30 dB attenuation range. Consult
	factory for impact or specifications.
G09	Guaranteed to meet Environmental
	Ratings
G12	RoHS Compliant
G12	1 to 38 GHz operation. I.L. 4.8 dB max.
	(mode/ 3468C)

ACCESSORY FURNISHED

Mating power/logic connector

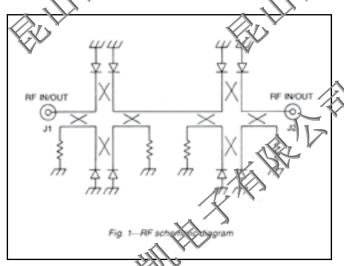
DIMENSION AND WEIGHT

Dimensional Tolerances, unless the wise indicated: .XX ±.02; .XXX ±.008

	PIN	J3 PIN FUNCTIONS (1) (4)
	1	GND (Note 2)
	2	ANALOG INPUT
		(Note 3)
	3	0.13 dB
	4	GND
	5	0.25 dB
	6	0.5 dB
	7	1 dB
	8	2 dB / / _ /
2	9	4 dB
	10	8 dB
	11	16 dB
	12	32 dB (MSR)
	13	+V 11111 V+
	14	-v /\^\^\
	15	0.96 dB (LSB)

(1) All unused logic inputs must be grounded.

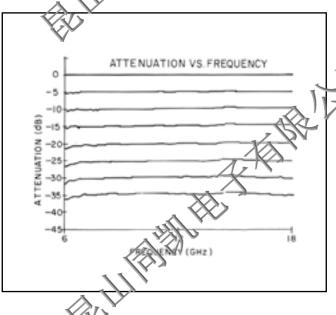
(2) Fo. normal programming control Pin 1 must be grounded or at logic "0". Application of logic "1" to Pin 1 overr des the digital input and sets the unit to insertion loss. For units with complementary programming (Option 2), the ascilication of a logic "1" to Pin 1 sets the unit to high isolation (0) dB or greater).

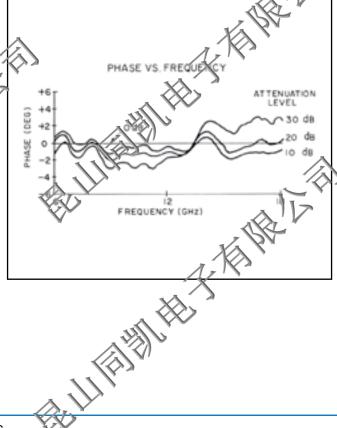

(3) Pin 2 is available to (a) monitor the D/A conventer output, (b) apply a modulation signal from a current source, or (c) apply an independent analog signal for turn-on, turn-off or vernier attenuation levels. If not used as a scribed in (a), (b) or (c), Pin 2 must be open.

(4) The Series 346C attenuate is are 10-bit digital attenuators. In order to use this govice with a lesser number of bits (lower resolution), the user may simply ground the logic pins for the lowest order unused bits. For example, a Series 346C unit operated as an 8-bit unit would have Pin 15 and Pin 3 connected to ground. All other parameters remain unchanged.

Series 347, 8 Bit Digital Phase Invariant Attenuators

The Series 347 digitally controlled FN diode attenuators offer essentially phase free operation over a wide dynamic range in multi-octave frequency bands between 2 and 18 GHz. The attenuators utilize a unique double balanced arrangement of diodes and quadrature couplers to achieve the phase independent attenuation characteristic. Excellent temperature stability is maintained by employing a self compensating biasing scheme. See Fig. 1.




• Low phase shift
• Frequency range: 2-18 GHz
• Non-reflective
• Attenuator range: to 45 dB
• LSB 0.125 dB
• High Speed

SPECIAL ORDER PRODUCT
SPECIAL ORDER PRODUCT
CONSULT FACTORY BEFORE ORDER

Attenuator Model 3474

TYPICAL PERFORMANCE

Series 347 Specifications

RERFORMANCE CHARACTERISTICS				
MODEL	3472	3474	3478	
Frequency Range (GHz)	26	4-11	6-18	
Mean Attenuation Hange	THI FO	32 dB	^	
Insertion Loss (Max)	4 dB	5 dB	7 dB	
VSWR (Max)	2.	.0	3.0	
Accuracy of Attenuation		± 0.5 dB		
Amplitude Flatness 0 to 20 dB > 20 to 32 dB	± 0.4 dB ± 0.6 dB	± 0.4 dB ± 0.8 dB	± 0.8 dB ⁽¹⁾ ± 1.3 dB ⁽¹⁾	
Monotonicity	À	Guaranteed	7	
Phase Shift 0 to 20 dB > 20 to 32 dB	£4° ±8°	± 4°	± 5° ± 10°	
ON Time, OFF Time		350 nsec		
Temperature Coefficient	A 1	.02 dB/°C		
Max. RF Power Input (Operating)		100 mW		
Max. RF Power Input (Surival)	V-	0.5 W		
Harmonic Distortion @ Pin = +10 dBm	-40 dBc	-50 dBc	-50 dBc	
Control		8 bit TTL, 0.125 dB L	SB	
Control input impedance	@ Logic "0" (–0.3 to +0.8 V), 500 μA max. @ Logic "1" (+2.0 to +5.0 V), 100 μA max.			
Logic Input	Logic "0" = Bit OFF; Logic "1" = Bit ON			
Power Supply Requirements		+5V ±5% @ 325 m +15V ±5% @ 15 m -15V ±5% @ 70 m	A \	

SPECIFICATIONS WITH EXTENDED RANGE OPTION (OPTION 45)

Mean Attenuation Range	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Accuracy of Attenuation	+1.0 dB
Amplitude Flatness 0 to 30 dB 20 to 32 dB > 32 dB	± 0.4 dB ± 0.6 dB ± 1.5 dB ± 0.8 dB ± 1.3 dB(1) ± 1.3 dB(1) ± 1.5 dB ± 2.0 dB
Phase Variation 0 to 20 dB > 20 to 32 dB > 32 dB	± 4° ± 8° ± 15° ± 20° ± 30°
Contro	8 bit TTL, 0.176 dB LSB

⁽¹⁾ Except from 8-18 GHz, flatness is ± 0.5 dB up to 20 dB, ± 1.0 dB up to 32 dB.

Series 347 Specifications

OPTION (G09) ENVIRONMENTAL RATINGS

peraung remperau		
Range	54°C to	+110°C

Non-Operating

Temperature Range -65°C to +125°C

Humidity MIL-STD-202F, Method 103B, Cond. B (96 kgs

95%)

msec)

Vibration MIL-STD-202F, Method 204D, Cond. B (.06"

double amplitude or 15G whichever is less)

Altitude MIL-STD-202F, Method

105C, Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-2021 Method 107D, Cond. A, 3 cycles

AVAILABLE OPTIONS

Option No.	Descri	ption

7 Two SMA male RF connectors10 One SMA male (J1) and one SMA

female (J2) RF connector

45 Extended attenuation range to 45 decisions

65 ±12V operation

G09 Guaranteed to meet Environmental

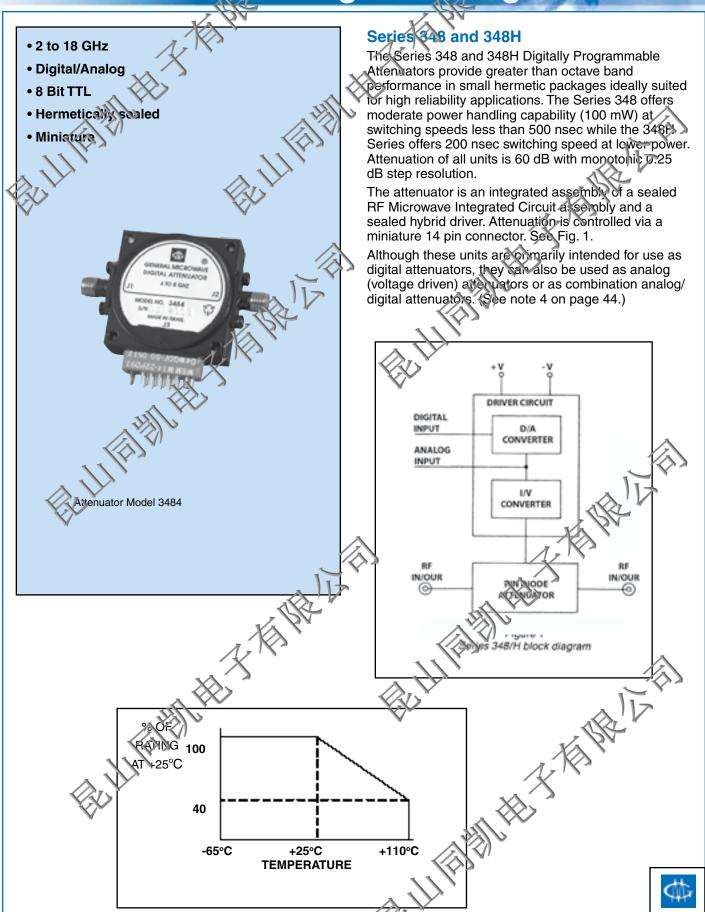
Ratings

G12 RoHS Compliant

ACCESSORY FURNISHED

Mating power/logic connector

J3 PIN FUNCTIONS			
PIN NO.	OPTION 45		
1	150	–15V	
2	- 15V	+15V	
3	Lo Not Connect	Do Not Connect	
9	0.125 dB (LSB)	0.18 dB	
	0.5 d É	0.70 dB	
6	4 dB	5.62 dB	
7	16 dB (MSB)	22.5 dB	
8	8 dB	11.25 dB	
9	GROUND	GROUND	
10	NOT USED	NOT USED	
11	2 dB	2.81 dB	
12	0.25 sB	0.35 dB	
13	1 dB	1.41 dB/	
14	NOT USED	NOT USEN	
15	+5V	√4 <u>5</u> V	


DIMENSIONS AND WEIGHT .38 (9, 7) FOR SMA FEMALE (TYP) .50 (12, 7) FOR SMA MALE (TYP) MOUNTING SURFACE (12,4) SERIES 347 WL 5 02. (142 gr.) approx.

MODEL Α В D 3472 2.5 (63,5) 2.26 (57,4) 2.28 (57,9) 0.22 (5,6) 1.25 (31,7) 3474 1.76 (44,7) 2.43 (61,7) 0.18(4,6)1.0 (25,4) 2.0 (50,8) 0.13 (4,6) 3478 2.0 (50,8) 1.76 (44,7) 2.58 (65,5) 1.0 (25,4)

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .X/X ± 008

Series 348 and 348H 8 Bit Digital/Analog Attenuators

Series 348 and 348k **Specifications**

PERFORMANCE CHARACTERISTICS

	FREQUENCY RANGE	MAX. INSERTION LOSS	MAX.	AT ME	FLATNES AN ATTEN UP	UATION L	EVELS
MODEL	(GHz)	(dB)	VSVIR	10 dB	20 dB	40 dB	60 dB
3482/H*	2.0-4.0	1.8	1.5	0.5	1.0	1.5	1.6
3402.11	1.5-4.5 ⁽¹⁾	1.9	2.0	0.7	1.6	3.0	3.5
3483*/H*	2.6-5.2	2.0	1.6	0.5	1.0	1.5	1.6
3403 /11	1.95-5.85 ⁽¹⁾	2.1	2.1	0.7	1.6	3.0	55
3484/H	4.0-8.0	2.4	1.7	0.5	1.0	1.5	16
3404/11	3.0-9.0(1)	2.5	2.2	0.7	1.6	3.0	3.5
3486/H	6.0-12.0	2.7	1.8	0.7	1.0	115	1.6
3400/П	4.5-13.5 ⁽¹⁾	2.8	2.2	0.9	1.6	30	3.5
3488/H	8.0-18.0	3.0(2)	1.8 ⁽³⁾	0.7	1.0	> 1.5	1.6
3 4 00/П	6.0-18.0 ⁽¹⁾	3.0(2)	1.8 ⁽³⁾	0.9	11/6	3.0	3.5

^{*}Special-order product. Consult factory be o le ordering.

- (1) Specifications for the extended frequency ranges are typical.
- (2) For 3488, 4.0 dB from 16-18 GHz. For \$488H, 3.5 dB from 12-16 GHz and 10 dB from 16-18 GHz.
- (3) VSWR is 2.0 from 16-18 GHz.

Mean	Attenuation	Range	60	de
	,			-

Accuracy of Attenuation

0-30 dB±1.0 dB >30-50 dB >50-60 dB±1.5 dB

MonotonicityGuaranteed

Phase Shift See Fig. 2 Temperature Coefficient±0.02 dB/°C

Power Handling Capability Withour Performance

Degradation(348) 100 mW cw or

peak (348H) 10 mW cw or peak

Survival Power

(from -65° C to $+25^{\circ}$ C.

See Figure 3 for

Higher Temperatures)......1W average, 25W 3cal

Switching Time......(348) 500 ns schoax (348H) 200 nsec max

Programming: 8 Bit TTL Positive true binary

Minimum Attenuation Step ... 0 25

Logic Input

Logic "0" 0.3 to +0.8 V Logic "1"+2.0 to +5.0 V Logic Input Current10 µA max

Analog Input Characteristics(4)

.....0 to 6V Range Transfer Function10 dB/V Input Resistance6 kW

Power Supply

Requirements+12 to +15V, 120 mA -12 to -15V. 50 mA

OPTIMA 609) ENVIRONMENTAL RATINGS

Operating Temperature

Range54°C to +110°C

Non-Operating Temperature

Range-65°C to +125°C

ACCESSORY FURNISHED

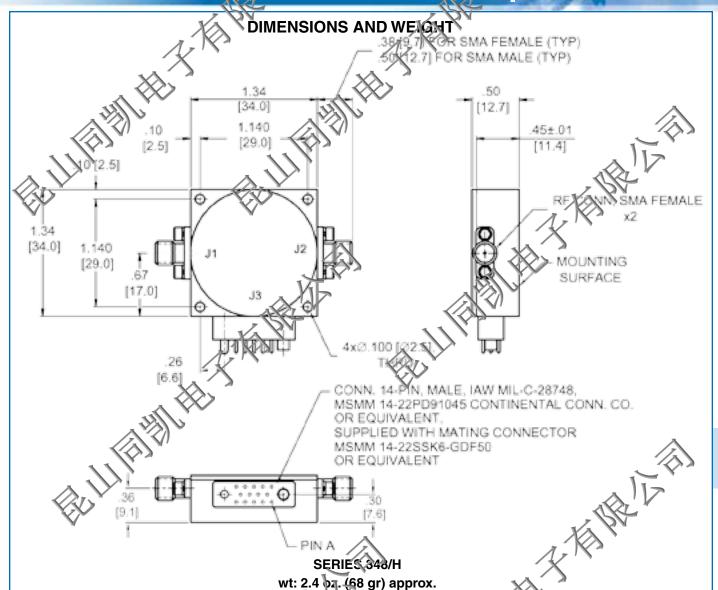
Mating power/logic connector

AVAILABLE OPTIONS

Option No. **Description**

Two SMA male RF connectors One SMA male (J1) and one SMA

female (J2) RF connector


49 High Rel screening (see page 394)

Guaranteed to meet Environmental **G09** 川原期 提入

Ratings

G12

Series 348 and 348H Specifications

J3	J3 POWER/LOGIC CONNECTIONS				
PIN	FUNCTIONS				
Α	Digital/Power GND				
В	Logic Control (Nete 2)				
С	−12 to -√5V				
D	0.25 d (\.\Sb)				
E	9.5 08/				
F	() 0B				
Н	4 dB				
J	2 dB				
K	16 dB				
L	32 dB (MSB)				
M	+12 to +15V				
N	8 dB				
P	GND				
R	Analog Input (Notes 3&4)				

NOTES:

Dimensional Tolerances, unless otherwise indicated: .XX ±.02;

- 1. All unused logic inputs nous be grounded.
- 2. For normal TTL programming control, PIN B must be grounded or at Logic 0. Application of Logic 1 to PIN B overrides the digital input and sets the unit to insertion loss. To interface with other logic families (e.g., CMOS, I/I L NMOS, etc.) contact factory.
- 3. If Analog input is not to be used, then connect PIN R to PIN
- 4. To use the unit as a voltage controlled attenuator, apply a control voltage of 0 to +6V at PIN R. The slope of attenuation will be non-rinally 10 dB/V. For a non-zero source resistance ($\rm R_{\odot}$) of up to 500 onms, the attenuation error is approximately –.0017 $\rm R_{\odot}$ $\rm V_{IN}$ dB and the slope will decrease by approximately 0.17 dB/V per 100 ohms of source resistance.

Using the 348/H Series attenuator as both a digital and analog control attenuator, the total attenuation ATT- \mathbf{v} , $\mathbf{0} \bullet \mathbf{V}_{\rm IN}$ + programmed digital attenuation. The maximum attainable \mathbf{n} ean attenuation is 60 dB.

Model 1761 Multi-Octave Digitally Controlled Miniature PIN Diobe Attenuator

Model 1761 is a miniaturized, digitary controlled PIN diode attenuator covering the instantaneous frequency range of 2 GHz to 18 GHz. This model, measuring only 1.34" square and 0.5" thick, provides a monotonic attenuation range of 60 dB with 7-bit (0.5 dB LSB) resolution and 1 microsecond switching speed.

The Model 1761 is an integrated assembly of a dual

The Model 1761 is an integrated assembly of a dual PIN diode atternator and a driver circuit consisting of a D/A converter and voltage-to-current converter. The unit is fully temperature compensated. The RF circuit consists of two wide band, T-pad attenuator sections in tandem. The levels of series and shupt currents required to maintain bilateral match at all frequencies is provided by the driver. This arrangement assures monotonicity over the full 2 to 18 GHz operating band at all levels of attenuation and for any programmed attenuation step.

The Model 1761 weighs approximately 1.5 oz. It is configured with SMA female RF connectors and a multipin connector for logic and power. The wax is powered by ±12 to 15V DC and the logic input is TTL compatible.

最加州南州

- 2 to 18 GHz
- 7 Bit TTL
- Hermetically sealed

Attenuator Model 1761

102

Model 1761 Specifications

PERFORMANCE	CHARACTERISTIC	CS
	W 100 3	

Up to 20 d 3±1.0 dB Up to 40 dB±1.25 dB Up to 60 dB±3.0 dB

Accuracy of Attenuation

0 to 20 dB.....±1.0 d3 20 to 40 dB....±1.5 dB 40 to 60 dB....±2.0 dB

MonotonicityGuaranteed
Temperature Coefficient±0.02 dB/°C

Phase Shift See page 66

Power Handling Capability

Without Performance

peak ...2 W average or r

derate linearly to 800 mW at 110°C

Switching Speed

50% TTL to 90% RF......1.0 μsec

Programming......7-Bit TTL Binary

Minimum Attenuation Step ... 0.5 dB

Logic Inout

Logic '0" (Bit OFF)......-0.3 to +0.8 V Logic "1" (Bit ON)+2.0 to +5.0 V Input Current10 μA max. Power Supply

Requirements +12 to +15V, 100 mA

−12 to −15V, 100 mA

Power Supply

RejectionLess than 0.1 dB/volt change in either supply

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Range -54°C to +110°C

Non-Operating Temperature

Humidity MIL-STD 202F, Method 103B,

Cond B (90 hrs. at 95%)

Cond. B (75G, 6 msec)

Cond. B (.06" double amplitude or

15G, whichever is less)

Altitude...... MIL-STD-202F, Method 105C,

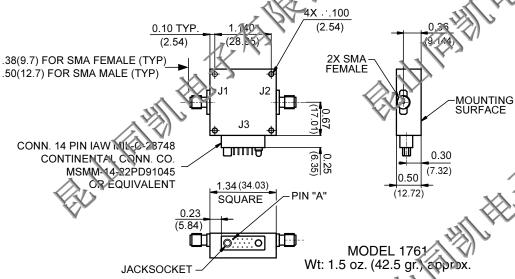
Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-202F, Method 107D,

Cond. A, 5 cycles

AVAILABLE OPTIONS

Option No. Description


G09 Guaranteed to meet Environmental Ratings

G12 RoHS Compliant

ACCESSORY FURNISHED

Mating power/logic connector

DIMENSIONS AND WEIGHT

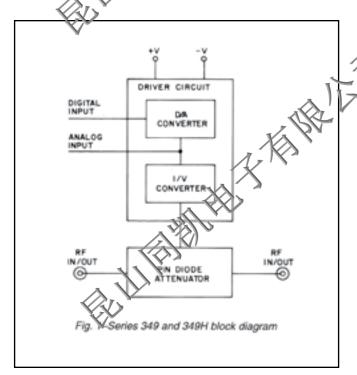
PIN Function						
PIN	FUNCTION					
Α	GND					
В	LSB 0.5 dB					
С	+V					
D	N.C.					
Е	1dB					
F	A VEZ					
H_Z	19.61					
J	4 dB					
1-K	2 dB					
L	N.C.					
М	16 dB					
N	8 dB					
Р	GND					
R	32 dB					

Dimensional Tolerances, unless otherwise indicated: .XX ± 02, XXX ±.008

Series 349 and 349 Octave-Band 11 Bit Digital PIN Diode Attenuators

The Series 349 and 349H programmable attenuators provide greater than octave band performance and wide programming flexibility in compact rugged packages. Attenuation ranges up to 80 dB are available with attenuation increments as low as 0.03 dB.

Each Series 349 and 349H unit is an integrated assembly of a belanced PIN diode attenuator and a driver circuit consisting of a PROM, a D/A converter and a current-to-voltage converter. See Figure 1. This arrangement provides a high degree of accuracy and repeatability and preserves the inherent in chotonicity of the attenuator.


SERIES 349

The maximum programmable attenuation range in every band except the 8.0–18.0 GHz frequency range is 80 dB. Attenuators limited in range to 64 dB exhibit switching times less than 500 nsec while the 80 dB units switch in less than 2 µsec.

SERIES 349H

If even faster switching of 64 dB units is required, GMC offers its Series 349H attenua ors. These units switch in less than 300 nsec with essentially the same performance specifications as the 64 dB Series 349 units.

All the attenuators are available with either a strobe/ latch or a non-linear current or voltage controlled attenuation capability. Refer to the Available Options table and the Notes following the Pin Functions table.

Series 349 and 349H Specifications

PERFORMANCE CHARACTERISTICS: SERIES 349

MODEL	FREQUENCY RANGE	MAX. INSERTION LOSS (dB)	MAX. FLATNESS (±dB) MAX. AT MEAN ATTENUATION LEVELS VSWR. UP TO					
	JII ()112	LO33 (dB)	J. J. J. Lin	10 dB	20 dB	40 dB	60 dB ⁽⁴⁾	80 dE(1)
3491-64	1.0-2.0	1.6		0.3	0.8	1.5	1.6	1.9
3491-80	0.75-2.25 ⁽²⁾	1.7	2.0	0.5	1.4	3.0	3.5	3.8
3492-64	2.0-4.0	1.8	1.5	0.3	0.8	1.5	1,8	1.9
3492-80	1.5-4.5 ⁽²⁾	129	2.0	0.5	1.4	3.0	3.5	3.8
3493-64	2.6-5.2	20	1.6	0.3	0.8	1.5	6	1.9
3493-80	1.95-5.85(2)	2.1	2.1	0.5	1.4	3.0	3.5	3.8
3494-64 3494-80	4.0-8.0	2.4	/2	0.3	0.8	1 5	1.6	1.9
	3.0-9.0(2)	2.5	22	0.5	1.4	3.0	3.5	3.8
3495-64	5.0-10.0	2.6	71.7	0.5	9.9	1.5	1.6	1.9
3495-80	3.75-11.25(2)	2.7	2.2	0.7	(1.4)	3.0	3.5	3.8
3496-64 3496-80	6.0-12.0	12.7	1.8	0.7	1.0	1.5	1.6	1.9
	4.5-13.5 ⁽²⁾	2.8	2.2	0.9	1.5	3.0	3.5	3.8
3498-64	8.0-18.0	3.0(3)	1.8 ⁽³⁾	0,1	1.0	1.5	1.6	
	6.0-18.0(2)	3.0 ⁽³⁾	1.8 ⁽³⁾	0.9	1.5	3.0	3.5	_

PERFORMANCE CHARACTERISTICS: SERIES 349H

							
MODEL	FREQUENCY RANGE GHz	MAX. INSERTION LOSS (dB)	MAX. VSWR	MAX. FLATNESS (±dB) AT MEAN ATTENUATION LEVELS UP TO			
				10 dB	20 dB	40 dB	60 dB ⁽⁴⁾
3491H-64	1.0-2.0	1.6	1.5	0.5	1.0	15	1.6
343111-04	0.75-2.25(2)	1.7	2.0	0.7	1.6	30	3.5
240011 64	2.0-4.0	1.8	45	0.5	1.0	1.5	1.6
3492H-64	1.5-4.5 ⁽²⁾	1.9	2.0	0.7	1.6	3.0	3.5
040011.64	2.6-5.2	2.0	1.6	0.5	JIJ/d	1.5	1.6
3493H-64	1.95-5.85 ⁽²⁾	2.1	2.1	0.7		3.0	3.5
3494H-64	4.0-8.0	2.4	1.7	0.5	1.0	1.5	1.6
	3.0-9.0(2)	2.5	2.2	0.7	1.6	3.0	3.5
3495H-64	5.0-10.0	2.6	1.7	017	1.0	1.5	1.6
	3.75-11.25	2.7	2.2	0.9	1.6	3.0	3.5
3496H-64	6.0-12.6	2.7	1.8	0.7	1.0	1.5	1.6
	4.5-13.5(2)	2.8	2.2	0.9	1.6	1 30	3.5
3498H-60	8.0-78.0	3.0 ⁽³⁾	1.8 ⁽³⁾	0.7	1.0	1.5	1.6
	6.0-18.0 ⁽²⁾	3.0 ⁽³⁾	1.8 ⁽³⁾	0.9	1.6	3.0	3.5

- (1) Applicable only to 80 dB versions.
- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$
- (3) Except from 16-18 GHz where insertion loss is 4.2 dB max. and VSWR is 2.2.
- (4) Flatness specification at 64 dB level is ± 0.2 dB higher than at 60 dB.

Series 349 and 349**⅓ Specifications**

- (5) The Series 349 attenuators are 11 bit digital attenuators. In order to use this device with a lesser number of bits (lower resolution), the user may simply ground the logic pins for the lowest order unused bits. For example, a Series 349 unit operated as an 8-bit unit would have Pin 15, Pin 1 and Pin 2 connected to ground. All other parameters remain unchanged.
- (6) Switching speed for a saleg input is 100 µSeC. typical. With Option 6.06 it is not greater than with digital in put.
- (7) For average attenuation of 80 dB the analog voltage is in the range of 4 to 8 V. (8) For average attenuation of 80 dB the analog voltage is in the range of 6 to 10 V.

Mean	Attenuatio	n Rang	е	1
// //34	9(x)-64, 34	ŀ9(x)H-6₄	4	84 JB
34	9(x)-80			80 dB
_				

Accuracy of Attenuation 0-30 dB..... ±0.5 dB >30-50 dB ±1.0 dB >50-64 dB ±1.5 dB >64-80 dB ±2.0 dB

Monotonicity Guaranteed Phase ShiftSee page

Temperature Coefficient ±0.025 dB/°C

Power Handling Capability

Without Performance Degradation 3491, 3492H thru 3493H ... 10 mW cw or peak

Survival Power (from -40°C to +25°C; see figure 2 for higher temperatures)

All units...... 1 W average 25 W peak (1 µsec max

pulse width)

Switching Time

349(x)H-64 300 nsec max. 349(x)-64...... 550 nsec max. 349(x)-80...... 2 µsec max

Programming Positive true binary (standard) or BCD

(Option 1). For complementary code, specify Option 2.

Minimum Attenuation Step(5)

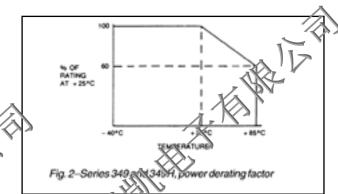
Binary Units 349(x)-64, 349(x)-64, 0.03 dB 349(x)-80

0.04 dB 0.10 dB BCD Units

Logic Input

Logic "1" (Bit ON)+2.0 to +5.0 Logic Input Sink Current 0.3 mA Logic Input Source Current 3 µA max

Analog Input (6)


349(x)-64, 349(x)H-64...... 0 to 6.4 V (7) 349(x)-80..... 0 to 8 V (8)

Power Supply

Requirements +12 to +15V, 120 mA -12 to -15V, 50 mA

Power Supply

Rejection Less than 0.1 dB/volt change in either supply

Series 349 and 349H Specifications

展別用原規則

OPTION (G09)ENVIRONMENTAL RATINGS

Operating Temperature

Range......-40°C to +85°C

Non-Operating

Temperature Range -54°C to +100°C

Humidity MIL-STD-202F, Method 103B, Cord. B (96 hrs. at

95%/2

......MIL-STD-202F, Method

213B, Cond. B (75G, 6

msec)

Vibration MIL-STD-202F, Method

204D, Cond. B (.06" double amplitude of 15G,

whichever is less

Altitude MIL-STD 2021, Method

105C Cond B (50,000 ft.)

Temp. Cycling MIL-STD-202F, Method

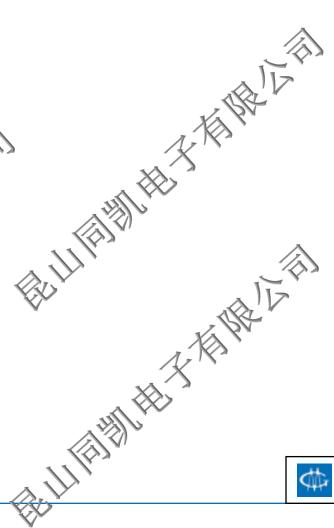
107D, Cond. A, 5 cycles

ACCESSORIE

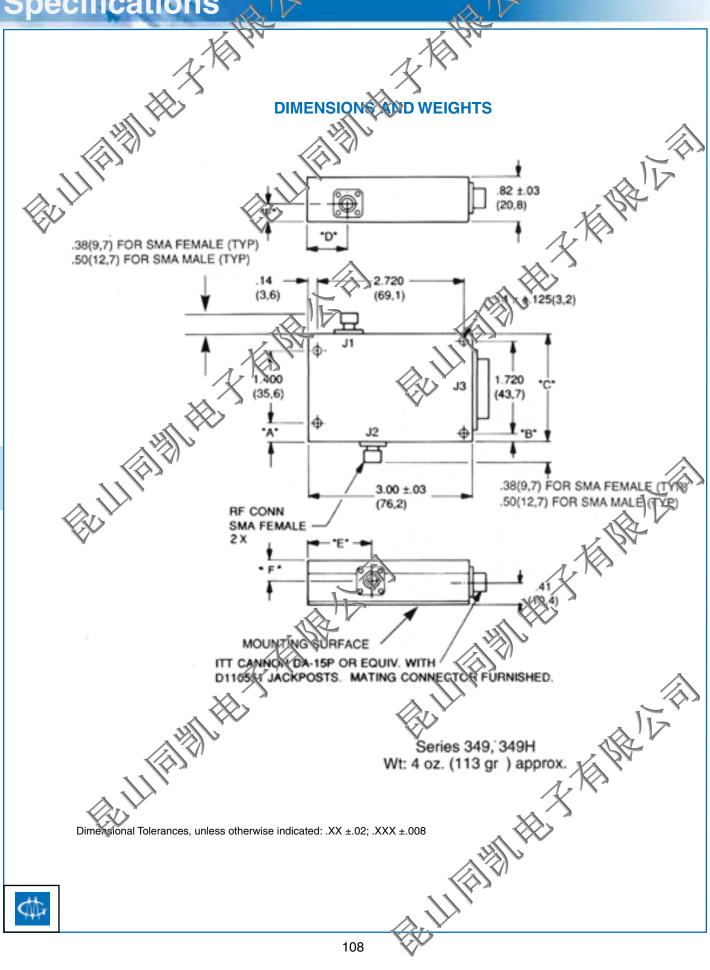
Mating power/logic connector

AVAILABLE OPTIONS

Option No. Description


- BDC programming (Binary is standard) 1
- 2 Complementary programming (logic "0" is Bit ON)
- Strobe latch for data input Atenuator 4 responds to data input when logic "0" is applied. Attenuator latched to data input when logic "1" applied

G06 Switching speed for analog input is no longer than with a digital input.


- Two SMA male RF connectors 7
- 10 One SMA male RF connector (J1) and one SMA female RF connector (J2)
- Guaranteed to meet Environmental G09

Ratings

G12 RoHS Compliant

Series 349 and 349 Specifications

Series 349 and 349H Specifications

	1/3/1/J			2XI V			
	MODEL	DIM "A"	DIM "8"	ым "c"	DIM "D"	DIM "E"	DIM "F"
/	3491, 3491H	.58 (14,7)	(10,7)	2.56 ± .03 (65,0)	.56 (14,2)	1.53 (38,9)	.34 (8,6)
» ⁻	3492, 93, 3492H, 93H	.30 (7,6)	.14 (3,6)	2.00 ± .03 (50,8)	.50 (12,7)	1.29 (32,8)	(8,6)
	3494, 95, 96 3494H, 95H, 96H	.30 (7,6)	.14 (3,6)	2.00 ± .03 (50,8)	.75 (19,1)	1.19 (30,2)	.34 (8,6)
	3498, 3498H	.30 (7,6)	.14 (3,6)	2.00 ± .03 (50,8)	.75 (19,1)	00 (5.4)	.34 (8,6)
		**	A PARTIES AND A	<		224,	
		XX.			A		

(XZ)							
J3 PIN FUNCTIONS(1)							
PIN s	BIN	ARY	BCD				
PIN	64 dB	80 dB	ВСВ				
\ /\	0.06 dB	0.08 dB	0.2 dB				
2	0.13 dB	0.16 dB	0.4 dB				
3	Analog I	nput / Strobe La	atch ⁽²⁾⁽³⁾⁽⁴⁾				
4		GND					
/ \ 5	0.25 dB	0.31 dB	0.8 dB				
6	0.5dB	0.63 dB	1 dB				
7	1 dB	1.25 dB	2 dB				
8	2 dB	2.5 dB	4 dB				
9	4 dB	5 dB	8 dB				
10	8 dB	10 dB	10 dB				
11	16 dB	20 dB	20 dB				
12	32 dB	40 dB	40 dB				
13	+12 to +15V						
14		-12 to -15V					
15	0.03 dB	0.04 dB	0.1 dB				

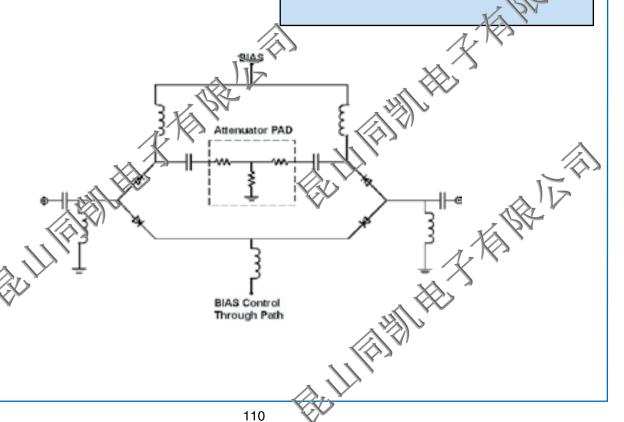
NOTES

- ISE # 1. The Series 349 attenuators are 11-bit digital attenuators. In order to use this device with a lesser number of bits (lower resolution), the user may simply ground the logic pins for the lowest order unused bits. For example, a Series 349 unit operated as an 8-bit unit would have Pin 15, Pin 1 and Pin 2 connected to ground. All other paralleless remain unchanged.
- 2. No neally supplied as an Analog input. Leave pin open if analog input is not used. Optionally available as a strobe istch furction for input data.
- 3. Pin 3 is available to apply a current or voltage to control the attenuator in a non-linear fashion.
- 4. It is recommended that when operating the Series 349/H Attenuators with the Strobe (Letc.) Option -4 feature, the digital control inputs should be in place, with the Latch set to a low "(0)" level, before the Attenuator is powered up.

Switched-Bit Attenuators

Digitally-Controlled Switched-Bit **Attenuators**

When broadband, ultra dist-switching performance is needed, the digitally-controlled switched-bit attenuator is the only solution, it excels in attenuation accuracy and flatness over broad/requency ranges, and its switching speed is equivalent to a high-speed PIN diode switch (25 nsec or better). Its only disadvantages are higher insertion loss and higher cost.


As stated earlier, attenuators are designed to match the requirements of specific applications. When the application requires fast switching speed (as in electronic warfare systems, for example), the switched-bit attenuator is the optimum choice (figure 1). It employs one or more pairs of SP2T switches, with a low-loss connection between one pair of outputs, and a fixed attenuator between the other outputs. The diodes are switched between their forward-biased and reverse ator) biased states, which gives the attenuator higher switching speed..

• 100 Hz to 18 GHz

Monotonicity Guaranteed

High Attenuation Range (up to 81 dB)

High Speed

Switched Bit Attenuators Selection Guide

λ,		_					Y/\ _ `	1
	/IT	CHED	RIT	AT.	TENI	$\square \Delta T$	DO BYC	
	,,,,		ווט	$\boldsymbol{\wedge}$	I - IA		טע זאַא	

FREQUENCY RANGE (GHz) 0.1 0.5 1.0 2.0 4.0 6.0 8.0 18 40 RANGE (dB) DIGITALLY CONTROLLS WITCHED BIT ATTENUATORS 0.1 63.5 SA-011-7-05 7 112 0.1 1 63.75 SA-011-8-025 8 2 6 25 SA-26-1-25 2 6 7 SA-26-3-1 3 2 6 8 SA-26-6-1 6 2 6 8 SA-26-7-1 7 114 2 6 8 SA-26-8-0.25 8 6 18 63.75 SA-618-2-5 2 6 18 63.75 SA-618-2-5 2		/ 1/	4		/ 1/			
0.1	0.1 0.5			0 18 40	ATTENUATION RANGE (dB)	MODEL	No. of BITS	PAGE
0.1 63.5 SA-011-7-05 7 112 0.1 1 63.75 SA-011-8-025 8 2 6 25 SA-26-1-25 1 2 6 7 SA-26-2-5 2 113 2 6 6 63 SA-26-6-1 6 2 6 8 SA-26-7-1 7 114 2 6 5 SA-26-8-0.25 8 6 18 63.75 SA-618-2-5 2		11/	DIGITALLY C	CONTROLLED SW	VITCHED BIT ATT	ENUATORS		
2 SA-26-1-25 2 SA-26-1-25 2 SA-26-2-5 2 SA-26-2-5 2 SA-26-2-5 2 SA-26-2-5 2 SA-26-6-1 3 SA-26-6-1 6 SA-26-7-1 7 SA-26-8-0.25 8 SA-26-8-0.25	0.1						7	1112
2 6 15 SA-26-2-5 2 113 2 6 7 SA-26-3-1 3 2 6 63 SA-26-6-1 6 2 6 8 SA-26-7-1 7 114 2 6 9 SA-26-8-0.25 8 6 18 63.75 SA-618-2-5 2	0.1	_ 1		7/	63.75	SA-011-8-025	8	
26 7 SA-2-3-4 3 26 6 63 SA-2-6-1 6 26 81 SA-2-7-1 7 114 26 6.3 SA-2-8-0.25 8 618 63.75 SA-618-2-5 2	V	2	6	-	25	SA-26-1-25	1	N
26 6 8 SA-26-7-1 6 26 8. SA-26-7-1 7 114 26 6. SA-26-8-0.25 8 6 18 63.75 SA-618-2-5 2		2	6		15	SA-26-2-5	2	113
2		2	6		7	SA-263.1	3	
2 6.3 SA-26-8-0.25 8 6 6.3 SA-618-2-5 2		2	<u>6</u>	ST. V	63	SA-26-6-1	6	
6—————————————————————————————————————		2	-6		200	SA-26-7-1	7	114
		2			6.5	SA-26-8-0.25	8	
6 ————————————————————————————————————		THILLY	6	18	63.75	SA-618-2-5	2	
	11	(E)	6	18	7.0	SA-618-3-1	3	115
6 ————————————————————————————————————			6	18	63	SA-218-6-1	6	
2 — 18 25 SA-218-1-25 116	V	2 ———		18	25	SA-218-1-25		116
				- 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		X	

ОРТ	OPTION (G09) ENVIRONMENTAL CONDITIONS					
Operating Temperature	-54°C to 95°C					
Storage Temperature	-65°C (0°) 25°C					
Humidity	Per MIL-STD 202F, Method 103B, Cond. B (96 Hours at 95% R.H)					
Shock	Per MIL-STD 202F, Method 213B, Cond. C (75g/6mSec)					
Altitude	Per MIL-STD 2027, Method 105C, Cond. B (50,000 ft.)					
Vibration	Per MIL-STD 202F, Method 204D, Cond. B (06' double amplitude or 15G - which ever is less)					
Thermal Shock	Per MIL-STD 202F, Method 107D, Cond. 4 (5Cycles)					
AVAILABLE OPTIONS Option No. Description	Environmental The Control of the Con					
G09 Guaranteed to meet Ratings	Environmental					

AVAILABLE OPTIONS

Series SA-011 Switched-Bit Attenuators 100-1000 MHz Specifications

PERFORMANCE CHARACTERISTICS

MODEL	SA-011-7- 05		
Frequency Range, min (MHz)	100 1000 ⁽¹⁾	A	
Attenuation Range, min (dB)	63.5 ⁽²⁾		
Insertion Loss, max (dB)	6.0	. 112	
VSWA max	1.4:1		
Number of Bits	7		
LSB, max (dB)	0.5	A K	
Monotonicity	Guaranteed	XX	
Accuracy of Attenuation	± 0.125 dB @0.5 dB ± 2% @1 to 63.5 dB		
Attenuation Flatness, max (dB)	± 1.5	>,	
Power Handling, max (dBm)	20		
Switching Time, max (nsec)	20		
Switch Rate, max (MHz)	0.5		
Control Logic	'1' = I.Loss '0' = Атт.		
Control Input	TRUE TTL GATE		
Power Supply Requirements	+5V ±2% @ 400 mA		
Environmental Conditions	See page 109		
Package Type	DC 2-11	A Revenue	

Control Logic	'0' = Атт.	
Control Input	TRUE TTL GATE	
Power Supply Requirements	+5V ±2% @ 400 mA	
Environmental Conditions	See page 109	
Package Type	DC 2-11	The second second
NOTES		FUNCTIONS
Performance can be optimized for a narrower band Attenuation range can be customized.	PIN Designations	011-7- 05 SA-011-8-025
AVAILABLE OPTIONS Option No. Description G09 Guaranteed to meet Environr Ratings	mental E2 1 2 2 4 4 5 5 8 6 10 E7 E8 + V	0.5 dB 0.0 dB 0.0 dB 0.0 dB 0.0 dB 0.0 dB 0.25 dB 1.0 dB 2.0 dB 0.25 dB 1.0 dB 2.0 dB 0.25 dB 1.0 dB 0.25 dB 1.0 dB 0.25 dB 0.5 dB 0.6 dB 0.7 dB 0.8 dB 0.8 dB 0.8 dB 0.8 dB 0.8 dB 0.9 dB 0.9 dB 0.0 dB 0

Series SA-26 Switched-Back Attenuators 2-6 GHz Specifications

	_ /	V /\ '-	
PERFORMANCE		WE DICT	\sim
MERECIRINANCE	LANGE AND LA		
			$\mathbf{-}$

MODEL	SA-26-1-25	SA-26-2-5	SA-26-3-1
Frequency Range, win (GHz)	2-6 (1)	2-6 ⁽¹⁾	2-6 (1)
Attenuation Range, min (dB)	25	15 ⁽²⁾	7 (2)
Insertion Loss, max (dB)	(2,0)	2.5	3.2
VSWR, max	1.8:1	1.8:1	2.8:1
Number of Bits	(3) × 1	2	1/3
LSB, (dB)	25	5	1
Monotonicity		Guaranteed	\
Accuracy of Mean Attenuation, max (dB)	±0.5	± 3	± 3
Attenuation Flatness, max (dB)	₹1.0 dB	± 0.3 @ 0 13 10 dB ± 0.9 @ >19 dB to 15 dB	± 0.3
Power Handling, max (dBm)	+ 23	+ 23	+ 23
Switching Time, max (nsec)	30	30	30
Switch Rate, max (MHz)	4.0	4.0	4.0
Control Logic		'1' = I.Loss '0' = А тт.	
Control Input			
Power Supply Requirements	+5V ± 2% @ 60 mA -12V ±2% @ 60 mA	+5V ± 2% @ 110 mA -12V ±2% @ 75 mA	+5V ± 2% @ 100 mA -12V ±2% @ 130 mA
Environmental Conditions	A	See page 109	
Package Type	DC 11	DC 12	DC 13

NOTES

1. Performance can be optimized for a narrower bandwidth

2. Attenuation range can be customized.

AVAILABLE OPTIONS

Option No. Description

G09 Guaranteed to meet Environmental

Ratings

RINFUNCTIONS						
PIN Designations	SA-26-1-25	SA-26-2-5	SA-26-3-1			
E1	25 dB	5 dB	1 dB			
E2	-	10 dB	5 dB			
E3	-	-	√ M/dB			
E4	-	13	-			
E5	-	XX	-			
E6	-	1,-1	-			
E7	-		-			
E8	- 🗙	\(\frac{1}{2}\)-	-			
+ V	+ 5V	+ 5V	+ 5V			
- V	- 131/	- 12V	- 12V			
G	GND	GND	GND			

Series SA-26 Switched-Bit Attenuators 2-6 GHz Specifications

	-/ \/ \/ \/
DIFFERENCE	CHARACTERISTICS
PAROTIVIANCE	CHARACT LINE NICO

		n	
MODEL	SA-26-6-1	SA-26-7-1	SA-26-8-0.25
Frequency Range, min (GHz)	2-6 ⁽¹⁾	2-6 ⁽¹⁾	2-6 ⁽¹⁾
Attenuation Range, min (dB)	63 ⁽²⁾	81 ⁽²⁾	63.75 ⁽²⁾
Insertion Loss, max (dB)	5.0	5.5	6.5
VSWF, max	2.0.1	2.0:1	2.0:1
Number of Bits	6	7	
LSB, max (dB)	1	1	0,25
Monotonicity	^	Guaranteed	
Accuracy of Mean Attenuation, max (dB)	± 0.5 @ 0dB to 15 d3 ± 0.75 @>15dB to 31dB ± 1.0 > 31dB to 53 dB	± 0.5 @ 0dB to 21dB ± 1.0 @ >21dB to 31dB ± 1.5 @ >41dB to 21dB	2 0.5 @ 0dB to 21dB ± 1.0 @ >21dB to 41dB ± 1.5 @ >41 to 63.75dB
Attenuation Flatness, max (dB)	± 0.5 @ Cd/3 to 15dB ± 0.7 5 @ >15dB to 32dB ± 1.0 @ >32dB to 63 dB	± 0.5 @ 0db to 21dB ± 0.75 @ > 21dB to 41dB ± 1.25 @ >41dB to 81dB	± 0.5 @ 0dB to 21dB ± 0.75 @ >21dB to 41dB ± 1.25 @ >41 to 63.75dB
Power Handling, max (dBm)	+ 23	+ 23	+ 23
Switching Time, max (nsec)	30	100	100
Switch Rate, max (MHz)	4.0	4.0	4.0
Control Logic	'1' = I.Loss '0' = А тт.	'1' = I.Loss '0' = Атт.	'1' = I.Loss '0' = Атт.
Control input		TRUE TTL GATE	A IZ
Power Supply Requirements	+5V ± 2% @ 300 mA	+5V ± 2% @ 400 mA	+5V ± 2% @ 450 mA
Environmental Conditions	//	See page 109	1.
Package Type	DC 2	DC 17	DC 18

NOTES

1. Performance can be optimized for a narrower bandwidth

2. Attenuation range can be customized.

AVAILABLE OPTIONS

Option No. Description

G09 Guaranteed to meet Environmental

Designations	A-20-0-1	3A-20-7-1	3A-20-0-0.23
E1	1 dB	1 dB	0.25 dB
E2	2 dB	2 dB	0.5 aB
E3	4 dB	4 dB	1.0 dB
E4	8 dB	8 dB/	2.0 dB
E5	16 dB	10 dB	4.0 dB
E6	32 dB	20 dB 🔪	8.0 dB
E7	-	48 aB	16.0 dB
E8	- 44	1	32.0 dB
+ V	+ 5V	√+ 5V	+ 5V
- V	-//	<u> </u>	-
G	GNC	GND	GND

FUNCTIONS

Series SA-6 S Switched-Bit Attenuators 6-18 GHz Specification

Æ	ERF	ORMANCE	CHARAC	TERISTICS
			n	

<u>, 187</u>	II OTIMATIOE OTIATI		Jeth Grimande Grianagie Inchies			
MODEL	SA-618-2-5	SA-618-3-1	SA-618-6-1			
Frequency Range, non (GHz)	6-18 ⁽¹⁾	6-18 ⁽¹⁾	6-18 ⁽¹⁾			
Attenuation Sange, min (dB)	15.0 ②	7.0 ⁽²⁾	63 ⁽²⁾			
Insertion Loss, max (dB)	0.5	6.5	13			
VSWR, max	2.0:1	2.0:1	2.0:)			
Number of Bits	2	3	56			
SB, max (dB)	5	1	1			
Monotonicity		Guaranteed	X			
Accuracy of Mean Attenuation, max (dB)	±1.0	± 0.5	± 0.6 @ 0dB to 15dB ± 1.0 @ >15dB to 32dB ± 1.5 @ >32dB to 63dB			
Attenuation Flatness, max (dB)	# 0.6 @ 5 dB ± 10 @ 10 dB ± 1.5 @ 15 dB	± 0.75	± 1.5			
Power Handling, max (dBm)		+ 23				
Switching Time, max (nsec)	30					
Rise and Fall Time, (nsec)	20					
Switching Rate, max (MHz)		4.0				
Control Logic	'1' = I.Loss '0' = Αττ.					
Conto Input		TRUE TTL GATE				
Power Supply Requirements	+5V ± 2% @ 110 mA -12V ±2% @ 75 mA	+5V ±2% @ 200 mA -12V ±5% @ 150 mA	+1V ± 2% @ 450 mA -12V ±2% @ 250 mA			
Environmental Conditions		See page 109				
Package Type	PS 12	DC 13	DC 22			

PIN FUNCTIONS			
PIN Designations	SA-618-2-5	SA-618 3-1	SA-218-6-1
E1	5 dB	1 dB	1 dB
E2	10 dB	[№] 2 dB	2 dB
E3	(5)) V	4 dB	4 dB
E4	117	-	8 dB
E5 🔨	///-	-	16 dB
E6 🚫	ひ"-	-	32 dB
E7 💙	-	-	-
E8	-	-	-
+ V	+ 5V	+ 5V	+ 5V
- V	- 12V	- 12V	- 12V
G	GND	GND	GND

NOTES

- 1. Performance and be optimized for a narrower bandwidth
- 2. Attenuation range can be customized.

AVAILABLE OPTIONS

Option No. Description
G09 Guaranteed to meet Environmental
Ratings

Series SA-218 Switched-Bit Attenuators 2-18 GHz Specification

PERFORMANCE CHARACTERISTICS

MCDEL	SA-218-1-25
Frequency Barge, min (GHz)	2-18 (1)
Attenuation Range, min)dB)	25 ⁽²⁾
Insertion Loss, max (dB)	2.6
VSWR, max	2.0:1
Number of Bits	1 1
LSB, max (dB)	25
Monotonicity	Guaranteed
Accuracy of Mean Attenuation, max (dR)	± 0.5
Attenuation Flatness, max (dB)	± 1.5
Power Handling, max (dBm)	+ 23
Switching Time, max (nsec)	30
Rise and Fall Time, (nax (nsec)	20
Switching Rate, max MHz)	4.0
Control Logic	'1' = I.Loss '0' = Атт.
Control Input	TRUE TTL GATE
Power Supply Requirements	+5V ± 2% @ 60 mA -12V ±2% @ 60 mA
Environmental Conditions	See page 109
Package Type	DC 11
<u> </u>	TKC 11/1

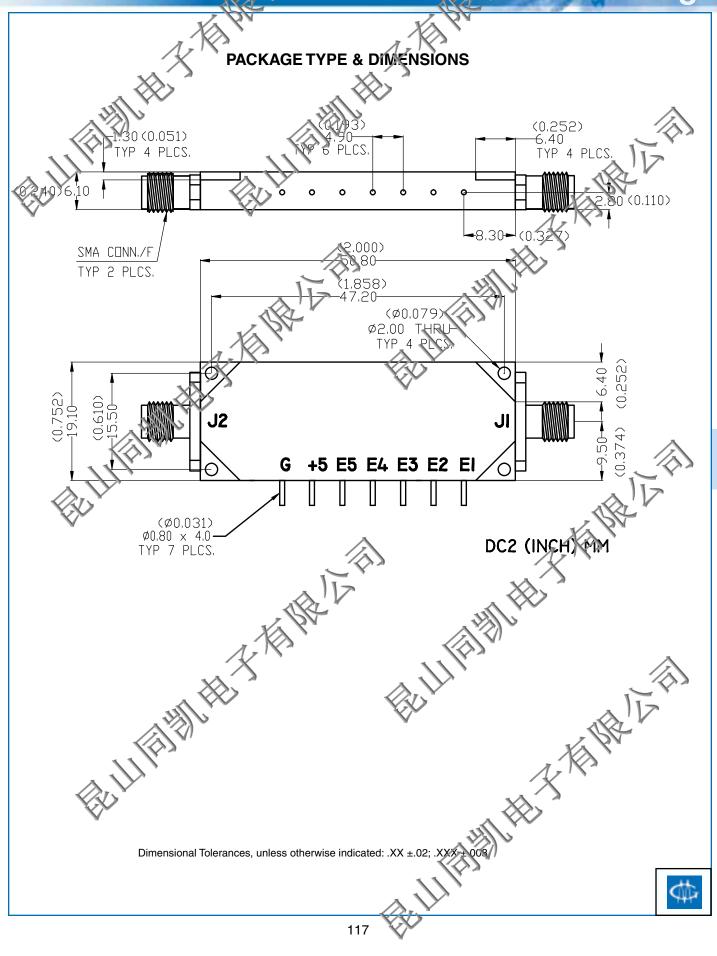
NOTES

- 1. Performance can be optimized to a narrower bandwidth
- 2. Attenuation range can be sustomized.

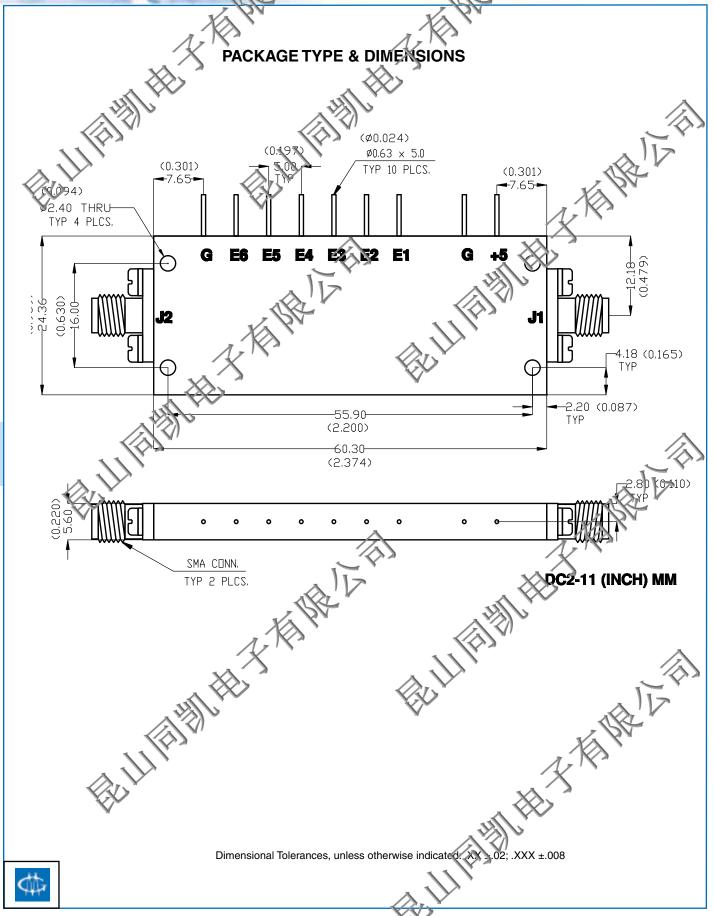
AVAILABLE ORMONS

Option No. / Description

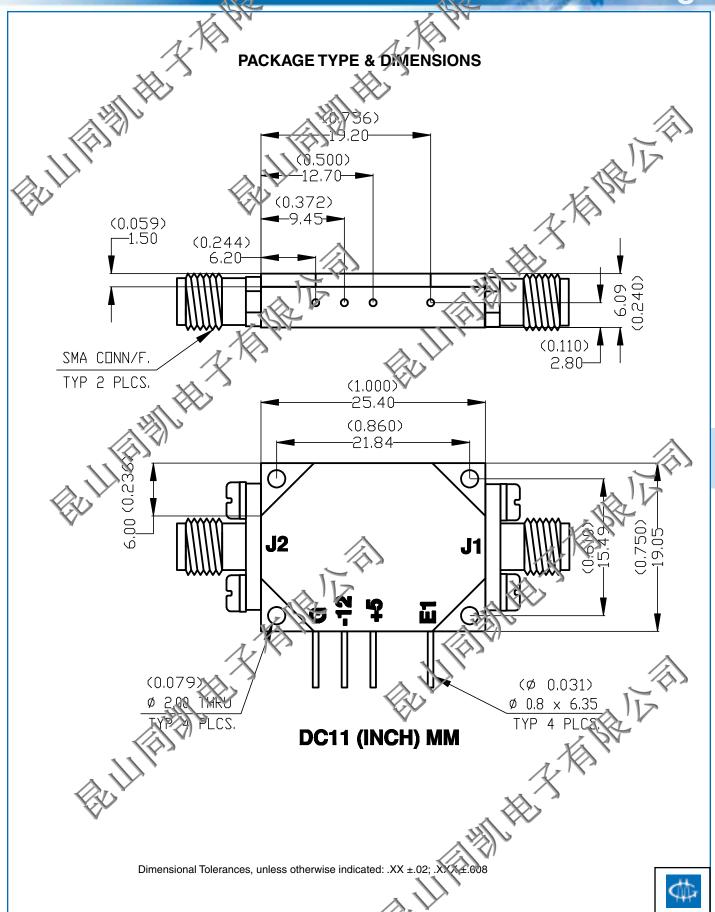
G09

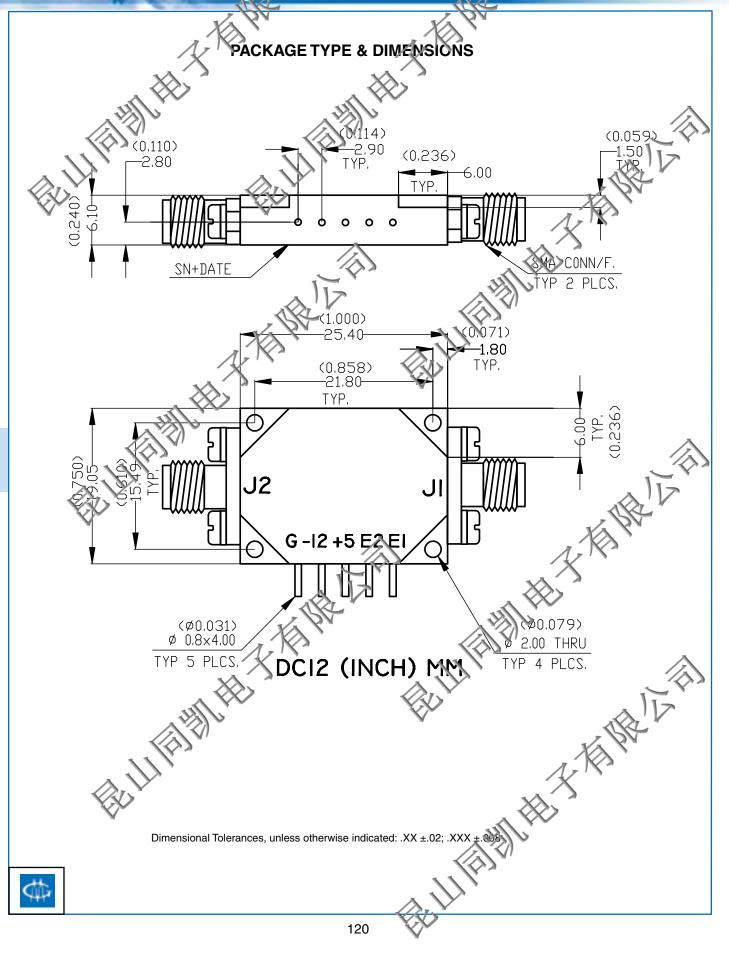

Guaranteed to meet Environmental

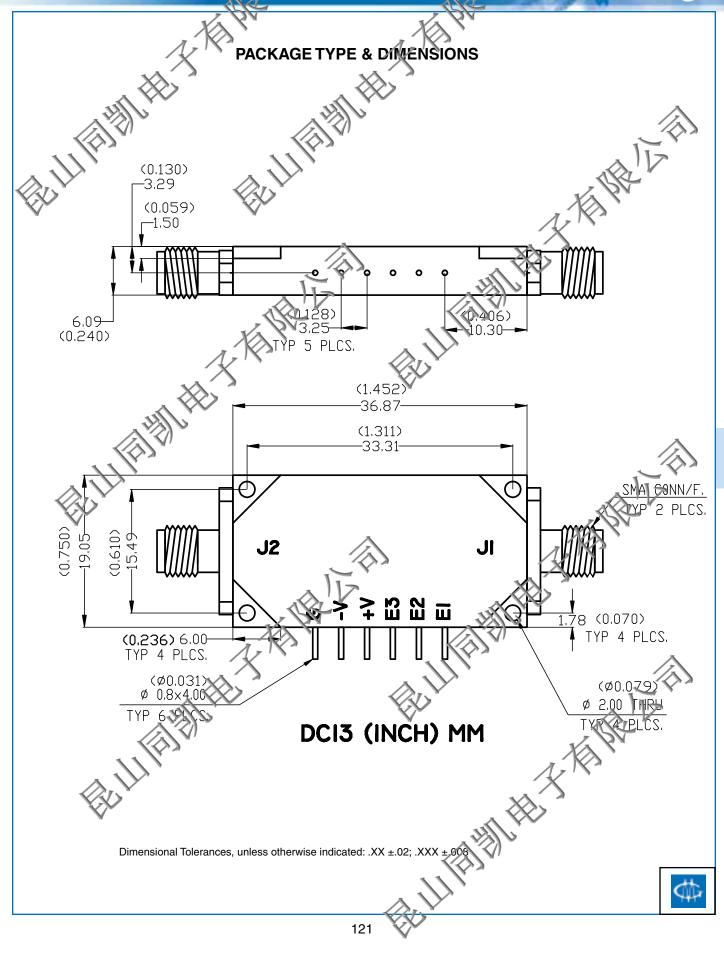
Ratings

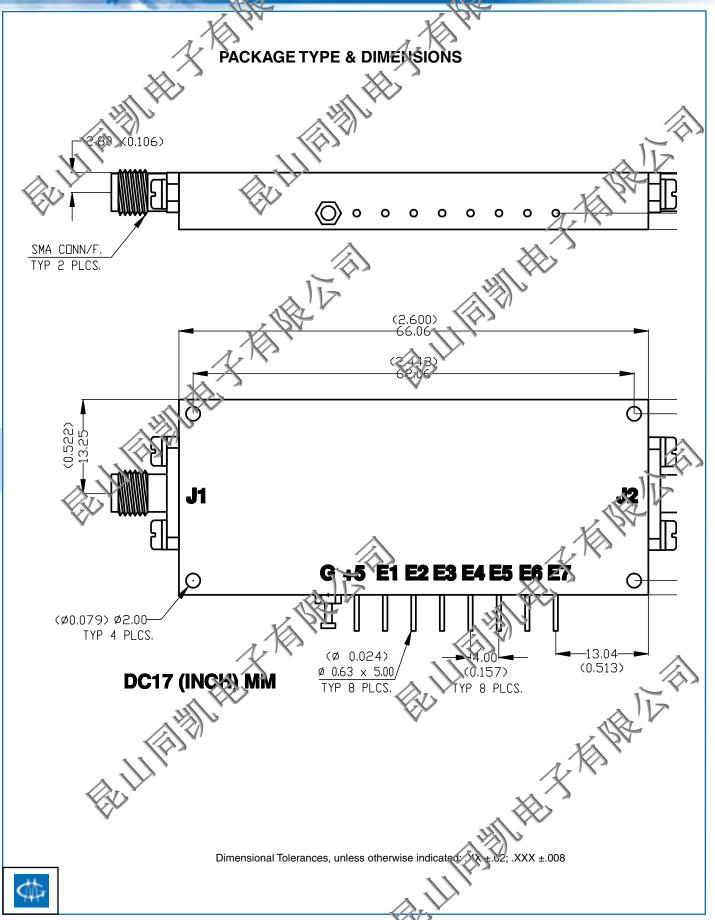


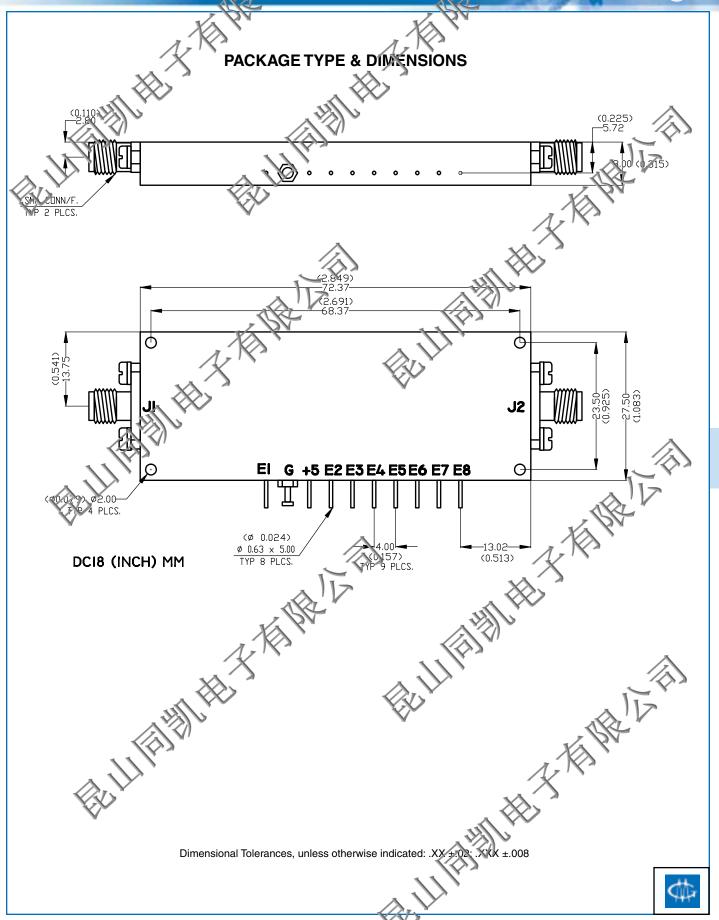
ull_,		
PIN FUNCTIONS		
PIN Designations	SA-218-6-1	
63	25 dB -	
E3	- 4	
E4	- XX	
E5	1, (
E6	X	
E7	₩ >-*	
E8	- V / / / /	
+ V	+ 5V	
- V	- 12V	
G \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GND	

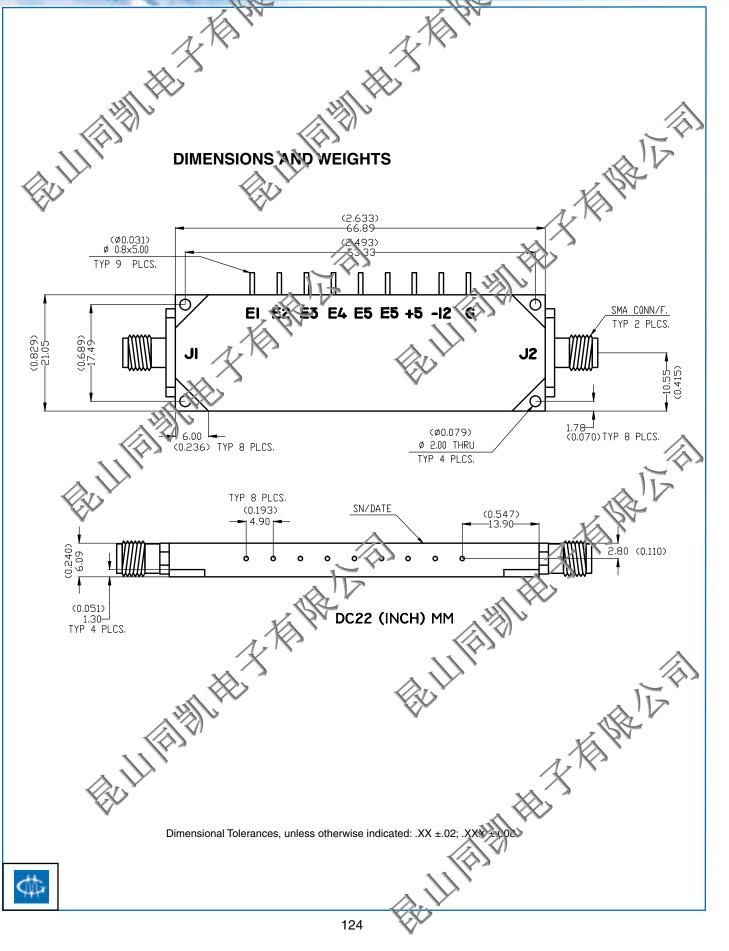

Switched-Battenuators **Outline Drawings**


Switched-Bit Attenuators Outline Drawings


Switched-Back Attenuators Outline Drawings


Switched-Bit Attenuators Outline Drawings


Switched-Bit Attenuators Qualine Drawings


Switched-Bit Attenuators Outline Drawings

Switched-Bit Attenuators Qutline Drawings

Switched-Bit Attenuators Outline Drawings

Phase Shifters Frequency Translators and **I-Q Vector Modulators**

General Microwave Corporation as been a leader in the field of microwave PIN diode control components for more than 35 years. The design and manufacture of high performance broadband phase shifters, frequency translators and I-Q Modulators have made General Microwave the undisputed leader for these devices.

Today's more demanding systems require the ability to control the phase and amplitude of RF/microvave signals with a repeatable, high degree of accuracy. General Microwave intends this section to not only inform you of our most popular products but also to provide insight into theory of operation, calibration and practical applications where they can be utilized.

General Microwave offers a complete line of broadband phase shifters and I-Q modulators which span the frequency range from 0.05 to 24.0 GHz. These devices are available in several different topologies that allow the designer to choose arriving various performance characteristics that vest suit his system needs. This section describes only our standard line of broadband phase shifter and I-Q modulator models. In addition to these, there are numerous special designs, employing a variety of phase shifter circuits, which Ceneral Microwave has utilized in custom applications.

PHASE SHIFTER FUNDAMENTALS

A variable phase shifter can be characterized as a linear two port device which alters the phase of its output signal in response to an external electrical command. (Mechanical phase shifters are not considered here.) Expressing this mathematically, with an input signal sin (It), the output will be $A(n)*sin[(\square t)+\square(n)]$, where n is the programmed phase and A(n) is the insertion loss. The difference between the input phase and the output phase is the sum of the phase shift due to the propagation through the phase shifter plus the programmed phase shift.

The relative simplicity of the idea that any reactions placed in series or shunt with a transmission line will produce a phase shift has given rise to many different s ph circuits over the years for use as phase shifters at microwave frequencies.

Usually, for high speed applications, the controlling elements have been semiconductor devices such as PIN, Schottky and varactor diodes, whereas for high cower requirements, when slower switching speed can be tolerated, ferrites are frequently employed. The final choice of a phase shifter network and control element will depend on the required bandwidth, insertion loss, switching speed, power handling, accuracy and resolution. In addition, a choice between analog and digital control must also be made.

Analog phase shifters are devices whose shase shift changes continuously as the control input is varied and therefore offer almost unlimited resolution with monotonic performance. The most commonly used semiconductor control devices used in analog microwave phase shifters are varactor diodes, which act as current controlled variable resistors. Schottky diodes and ferrite devices are also used as variable elements in analog phase shifters but the former suffer from limited power handling capability and matching difficulty in broadband networks whereas the latter are generally larger, require more bias power, and are relatively slow compared to semiconductor designs.

Among the more useful topologies for analog phase shifters are the loaded line design using lumped or distributed elements and the reflective design employing quadrature hybrids. One of the variants of the reflective phase shifter is the vector modulator. which in the particular embodiment used by General Microwave shows excellent performance over 3:1 bandwidths. This capability is especially use ut in the design of frequency translators⁽¹⁾ and high resolution phase shifters for EW systems as well as in broadband simulators as I-Q modulators, where separate control of the quadrature components of the signal allow for independent adjustment of both phase and amplitude.

Analog phase shifters are readily convertible to digital control by the addition of suitable D/A converters and appropriate linearizing chouts.

ncy of phase shift (1) Phase shifters can be used to translate the frequency of an Rif carrier by subjecting it to a linear time varying phase shift.

Phase Shifters and A I-Q Modulators

WHAT IS AN IQ VECTOR MODULATOR?

An IQ Vector Modulator is an RF or microwave circuit which has the ability to control both the amplitude and phase of the transpitured signal simultaneously. Any sinusoidal signal can be expressed as a vector having the properties of both amplitude and phase with respect to a reference signal. If a signal is thought of as a vector in a polar coordinate system with coordinates of amplitude and phase, it can also be defined in a rectangular coordinate system with coordinates of "I" and "Q". The term "IQ" does not represent anything about the intelligence of the design engineer, but rather that the user can control both the "In-Phase" and "Quadrature-Phase" components of the output signal.

WHAT IS A TYPICAL IQ MODULATOR CIRCUIT?

The circuit typically includes an input power divider which splits the incident signal into two paths, an amplitude and/or phase control element in each path, and an output signal summing circuit. In the simplest embodiment, the input signal is divided into two equal signals with a 90° phase difference; controlled by a phase invariant bi-phase attenuator in each path; and combined by an in phase power sombiner as shown in figure 1.

WHAT ACTIVE CONTROL COMPONENTS ARE USED IN IQ MODULATORS?

The control components in an IQ vector modulator are circuits that employ PIN diode, Schottky diode or FET devices. The simplest circuit uses a PIN diode attenuator in series with a PIN-diode bi-phase modulator, or a combination of the two devices in a single bi-phase attenuator. This device has the property of providing a continuous function which first attenuates the input signal with no phase shift, then shifts phase 180° at maximum attenuation, and then decreases attenuation while holding a constant 180 phase shift. Balanced or double balanced Schottle diode or FET mixers exhibit a similar function, but are limited in dynamic range of attenuation AND diode devices usually exhibit higher power har diing, lower insertion loss and higher intercept points than Schottkydiode or FET based devices. Schottky diode or FET devices are preferred for modulation rates higher than a few megahertz

WHAT ARK SOME OF THE USES OF IQ VECTOR MODULATORS?

- Amplitude and Phase control for RF simulator systems
- Quadrature Amplitude Modulation
- Cancellation of unwanted jamming signals
- Cancellation of crosstalk between co-located communication systems
- Cross-Polarization Cancellation
- Doppler Simulation
- Nulling of antenna reflections in mo lostatic radar systems
- Complex weights for Phased Array Antennas
 Linear Filter Equalizer

HOW ARE IQ VECTOR MODULATORS CALIBRATED?

Calibration of the Q vector modulator for controlled amplitude and phase response is often performed by generating a "bok-up" table using a vector network analyzer. To obtain the highest degree of accuracy, the calibration should be performed in-situ. A discussion of calibration techniques is provided on page 58. When IQ vector modulators are used in a nulling system an algorithm can readily be developed to adjust the values of I and Q in a closed loop fashion to achieve the desired system performance.

CAN THE I-Q VECTOR MODULATOR BE CUSTOMIZED FOR SPECIAL APPLICATIONS 1

General Microwave has customized many variations of the IQ vector modulator for numerous applications ranging from low cost designs to nuclear hardened reday systems. Our sales and engineering staff are available to help you maximize your system performance by incorporating IQ vector modulators to meet challenging system requirements

JIII EN TO THE TENTON OF THE PARTY OF THE P

Phase Shifters and Phase Shifters and Phase Shifters

DEFINITION OF PARAMETERS

Phase Shift:

The difference in prace angle of the existing RF signal at a given frequency and phase shift setting referenced to the exiting signal at the same frequency with the phase shifter set to zero degree phase shift.

Accuracy

The maximum deviation in phase shift from the programmed phase shift over the operating frequency range when measured at room ten operature.

Temperature Coefficient:

The average rate of change in phase shift, as referenced to the zero degree phase state, over the full operating temperature range of the unit. Expressed in degrees phase shift/degrees C.

PM/AM:

The maximum peak-to-peak change in insertion loss of the phase shifter at any phase state over the full 360° phase range.

Switching Speed:

The time interval from the 50% point of the TTL control signal to within 10° of final phase shift. This applies to a change in either discription between any two phase states which differ by more than 22.5°.

Carrier Suppression:

When the phase shifter is operated as a frequency translator, the minimum ratio of carrier output power to the warslated carrier output power.

Sideband Suppression:

When the phase shifter is operated as a frequency translator, the minimum ratio of any sideband output power to the translated carrier output power.

Translation Rate:

When the phase shifter is used as a frequency translator, the translation rate is determined by dividing the clock rate by the number of steps. Number of steps is equal to 2ⁿ where n equals number of bits.

TYPICAL PERFORMANCE CHARACTERISTICS

HARMONICS AND INTERMODULATION PRODUCTS

All PIN diode control devices will generate harmonics and intermodulation products to some degree since. PIN diodes are non-linear devices. When compared to digital switched-bit designs, analog PIN dioce phase shifters are more prone to generate specieus signals since the diodes function as current-variable resistors and are typically operated at resistar ce levels where significant RF power is absorbed by the diode.

The levels of harmonic and intermodulation products generated by a phase shifter or I-Q modulator are greatly dependent upon its design, the operating frequency, attenuation setting and input power level. Typical 2nd and 3rd cruer intercept performance for a moderately fast chase shifter, i.e. 500 nsec switching speed follows:

TYPICAL INTERCEPT POINTS			
Frequency 2nd Order 3rd Order Intercept			
2.0 GHz	+35 dBm	+30 dBm	
8.0 Ghz	+40 dBm	+35 dBm	

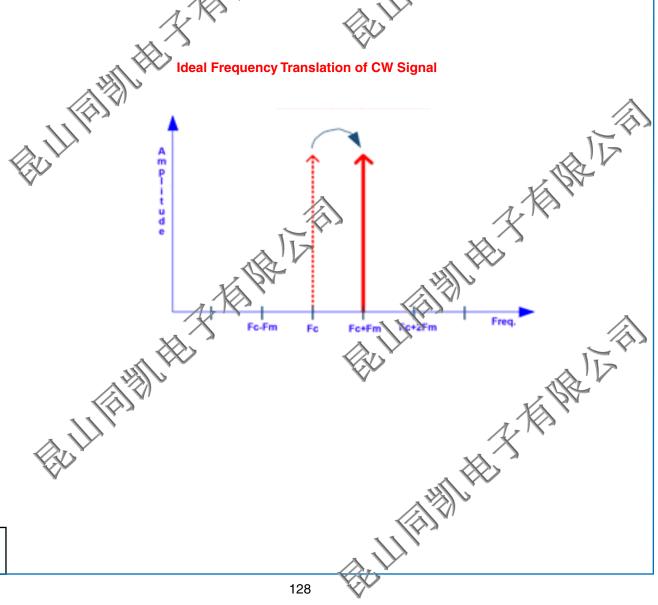
PHASE NOISE

The phase shifters and I-Q modulators offered by General Microwave minimize the contribution of phase noise to system performance. This is accomplished by utilizing PIN diodes which are less sensitive to high frequency noise than Schottky diodes, limiting the noise bandwidth in driver control elements and the use of low noise buffer amplifiers to drive the PIN diodes.

Phase Shifters and **I-Q Modulators**

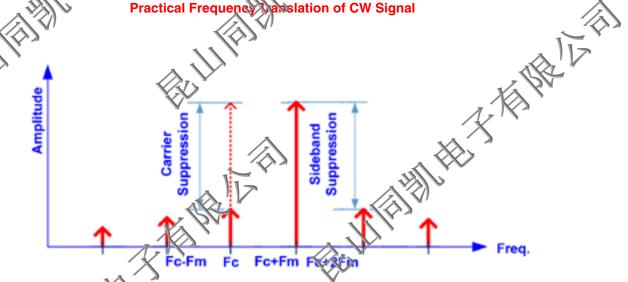
WHAT IS FREQUENCY TAANSLATION?

Translation is shifting the frequency of a signal by a user controlled delta. This frequency delta, also known as Translation Rate, is usually notated by "Fm".


When the user wants to translate the signal by 1 Hz/he needs to apply a ramp (counter) that sweeps the phase control of the phase shifter (translator) starting from zero phase shift and ending at 360°. in a cyclic

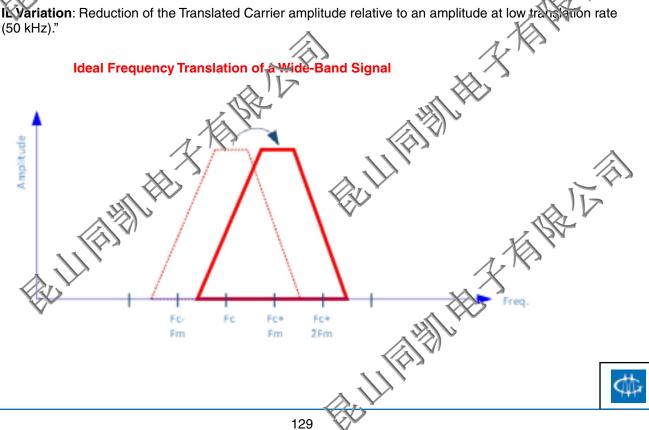
Each cycle should take exactly 1 second in order to achieve a shift of 1 Hz. Using 10 bit counter, the cloc the counter would be 1/1024 Hz. Using only 3 bit counter, the clock of the counter would be 1/32 Hz. So using less bits will enable lower clock rates. However, too low number of bits will cause poor sidebands and carrier suppression.

Let us assume that we have a pure sine-wave signal as a carrier at Fc that appears at the output of the phase shifter with a nominal amplitude of 0 dBm.


Now, when introducing an Fm [Hz] translation (covering the 360° once every 1/m [seconds]) using the 5 Most Significant Bits.

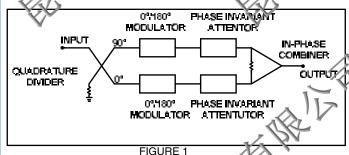
With a perfect phase shifter we expect that the spectrum will look like the

Phase Shifters and **I-Q** Modulators


However, with a practical phase shifter the spectrum will look like this:

Where:

Carrier Suppression: The amplitude difference between the translated signal and the original carrier. Sideband Suppression: The amplitude difference between the translated signal and the strongest sideband (could be at Fc-n*Fm or Fc+n*Fm, but usually is the Fc+2*Fm product).


IL Variation: Reduction of the Translated Carrier amplitude relative to an amplitude at low translation rate (50 kHz)."

I-Q VECTOR MODULATOR— THE IDEAL CONTROL COMPONENT!

Microwave control components are used to vary signal amplitude and phase. We cally, they consist of two-port devices including amplifiers, attenuators, phase shifters, and switches. The I-Q vector modulator is a unique combination of active and passive devices that is, in theory really suited for the simultaneous control of amplitude and phase.

THEORY OF OPERATION

I-Q Vector Modulator Block diagram

The block diagram of the I-Q vector modulator is shown in Figure 1. An RF signal incident on a 3 dB quadrature hybrid is divided into two equal outputs, with a 90 degree phase difference between them. The in-phase or 0 degree channel is designated the I channel and the quadrature or 90 degree channel is designated the Q channel. Each signal passes through a biphase modulator which selects the 0 or 180 degree state for both the I and the Q paths. This defines the quadrant in which the resultant output signal resides (Figure 2). The attenuator in each path then varies the

magnitude of each of the signals, which are combined in phase to yield the resultant vector. This vector will lie anywhere within the bounded area shown in Figure 2. Thus, any signal applied to the I-Q vector modulator as be shifted in phase and adjusted in amplitude by assuming the desired attenuation level = x dB and the desired phase shift = \Box degrees. The normalized output voltage magnitude is then given by:

$$R = 10^{-(x/20)}$$

The attenuation values of the I and Q atterwators are then given by:

I attenuator (dB) = 20 log (f2 ccs []) Q attenuator (dB) = 20 log (R sin [])

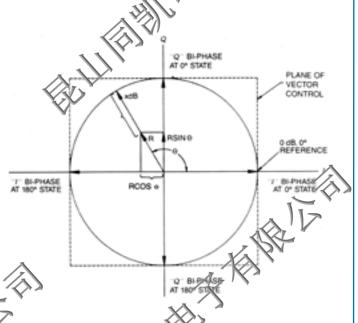


Fig. 2-I-Q Phase Relationship

To achieve the desired phase shin, bi-phase modulator states must also be selected as shown in Table 1. In this way, the phase and amplitude of the output signal can be varied simular eously in a controlled fashion.

					
	TABLE 1				
	Bi-phase Mode	ulator States	Desired Phase Shift		
	<u> </u>	Q			
	0°	0°	0°-90°		
-	180°	0 °	90°-180°		
	180°	180°	180°-270°		
	0 °	180°	270°-360°		

The theoretical model presupposes perfect amblitude and phase balance in the two signal paths, and ideal quadrature coupling in the 3 dB hydrig to the extent that the conditions are not metric practice, the performance of the I-Q vector modulator will be limited.

PHASE BALANCE

The key element in determining the useful frequency range of the I-Q vector modulator is the 3 dB quadrature hybrid. Its post important characteristic is very low quadrature phase error (such as small deviation from 40 degree phase shift between outputs). To achieve this over a broad frequency range, we employ the Hopffer quadrature hybrid⁽²⁾, which exhibits extremely wideband quadrature-phase properties (typically greater than 3 to 1 bandwidth with ±2 degree phase balance).

In addition to using an in-phase Wilkinson combiner (which, with proper design, exhibits excellent phase balance) the transmission-line length for the I and Q paths must also be carefully phase-matched.

(2) S. Hoofer, "A Hybrid Coupler for Mycrostrip Configuration," IEEE MTT-S International Microwave Symposium Digest, 1979.

AMPLITUDE BALANCE

The amplitude balance of the I and Q paths is a second source of performance limitation. Unequal power levels in these paths also produce errors in both the amplitude and phase of the transmitted signal. To minimize this source of error, the quadrature-hybrid coupling must be adjusted to provide minimum deviation from the nominal 3 dB across the frequency band. For an ideal hybrid, the amplitude unbalance will be ± 0.31 dB over an octave band. The effect of amplitude and balance error on phase is shown in Figure 3.

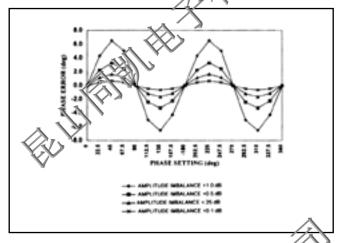


FIGURE 3
Phase Error Due to Amplitude Imbala ice

NON-IDEAL BI-PHASE MODULATOR ATTENUATOR

Errors in amplitude and phase will occur if the biphase modulator deviates from the ideal, eg: changes state from 0 to 180 degrees with constant amplitude or if the attenuator has an associated phase shift as

attenuation is varied. Not only do these components in practice exhibit such deviations, but their interacting reflections may increase the resultant errors significantly. The arrangement in Figure 4 minimizes the errors. As indicated, the tandem combination of a biphase modulator and attenuator in each path is replaced by a doubly-balanced biphase modulator. The doubly-balanced biphase modulator developed by General Microwave⁽³⁾ has the ability to attenuate a signal by more than 20 dB with constant phase their change the phase 180 degrees and return to the lov-(os) state. At insertion loss, it exhibits a naximum phase error of less than ±6 degrees and an amplitude balance of ±0.5 dB over a 3 to 1 bandwidth.

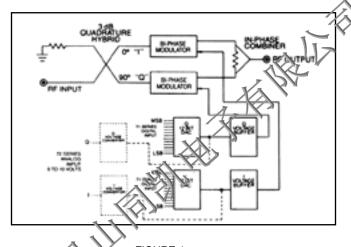


FIGURE 4 Series 71/71 Block Diagram

PRACTICAL APPLICATIONS

PHASE SHIFTERS

If the doubly-balanced biphase-modulator conditions are adjusted so that the magnitude of the resultant vector remains fixed, the I-Q vector modulator can behave as a constant-amplitude phase shifter. The relationships between the desired phase shift and the I and Q attenuation levels are given by:

where I and Q are no maized voltages.

(3) Z. Adler and R. S. nilowitz, "Octave-Band High-Precision Balanced Modulator," IEEE MTT-S International Microwave Symposium Digest, 1984. The relationship between the I and Q drive circuitry can be generated in either analog or digital fashion. The analog circuit employs a broadband quadrature typerid to generate the drive signals. In the digital give circuit, PROMS are used to provide the required relationships between I and Q. See the Selection Guide on page 61 for the General Microwave phase shifter model numbers.

FREQUENCY TRANSLATORS

A signal-processing technique using a linear timevarying phase shifter is one method of irequency translation. One principal use is in ve only deception for ECM systems by providing false Doppler radar returns.

In a true Doppler radar situation, the reflected signal is translated in frequency in an amount proportional to the radial velocity of the target. As a rule, there are no harmonics or sourious signals accompanying the reflection. However, if the target is using velocity-deception techniques, spurious signals may be present in the radar return because of the non ideal performance of the frequency translator. The presence of these sourious signals will reveal that the Doppler radar is being jammed. Therefore, it is critical for optimum ECM system performance that the frequency translator suppress the carrier, harmonics and all unwanted sidebands to the greatest extent possible. For the linear phase shifter, the principal factors that contribute to imperfect carrier suppression and sideband generation are:

2 error

This is the deviation from 360 degrees witer maximum phase shift is programmed.

₽M/AM error

The amplitude change (AM) is a function of the phase change (PM).

Phase nonlinearity

It is the deviation from linear phase shift vs. time.

Quantization error

This term is usually negligible for phase resolution greater that 6 bits. It arises in a digital phase shifter which only approximates linear phase shift with discrete phase steps.

Flyback time

This arises from the finite time required by the phase shifter to return from 360 to 0 degrees.

In the I-Q modulator, since the rie work operates as a constant-velocity rotating vector, the 0 and 360 degree phase states are exactly the same, and the 2 error and flyback er or are eliminated. In addition, the General Microwave Series 77 provides 10 bits of digital phase control sufficient to eliminate the quantization error), while phase linearity is optimized by the use of PROM consction in the drive circuitry. Finally, the PM/AM error is minimized by using matched doubly-balanced biphase modulators, thereby reducing this error assentially to the difference in amplitude of the 3 dF quadrature hybrid output ports. This amplitude imbalance varies with frequency and generates a unique spurious sideband during frequency translation. An additional PROM correction using RF operating frequency information can be employed to reduce this spurious sideband for customer requirements.

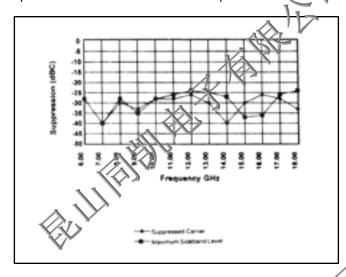


FIGURE 5-Typical Carrier and Sideband Suppression General Microwave Model 7728A Frequency Translator

The specifications of the General Microwava Series 77 Digitally Controlled and Series 78 Voltage Controlled Frequency Translators inc. ude 25 dB carrier suppression and 20 dB sideband suppression over a three-to-one frequency range. Tycical performance data for carrier and sideband suppression, of the 6 to 18 GHz Model 7728A, are shown in Figure 5. Carrier and sideband suppression of greater than 34 dB for a frequency translator covering a 15-percent bandwidth at X band over the operating temperature range of -54°C to +100°C have been achieved in production quantities.

COMPLEX I-Q VECTOR MODULATORS

System requirements often call for a tandem connection of phase shifters and attenuators to provide independent control of magnitude and phase of an RF signal. If tight tolerances are required for the amplitude and phase accuracy, a look-up table is usually incorporated in the system software to calibrate the phase shift and attenuation across the frequency range. This is a tedious job that entails the generation of an extensive amount of error correction data, obtained by alternately varying the phase shifter and attenuator over the dynamic race for each narrow frequency band where optimization is required. The inclusion of an I-Q vector modulator in the system in place of a discrete phase shifter and attenuator offers several distinct advantages. A single RF component replaces two separate units, thus reducing cost and eliminating interacting VSWR. The relationship between the and Q inputs and the desired amplitude and phase permits a tremendous reduction in the amount or data required for a look-up table. This is because the I and Q inputs are independent variables for the I-Q vector modulator, whereas the tandem connection of attenuator and phase shifter exhibit large AM to PM and PM to AM pushing, creating dependency between the amplitude and phase inputs. Depending on the frequency range and accuracy specifications, the RF circuitry of the I-Q vector modulator can be optimized to eliminate the need for a look-up table entirely.

The I-Q Vector Modulator is ideally suited for use in EW Simulators, Adaptive Equalizers of Automatic Test/Calibration Systems where extremely high accuracy and repeatability are essential.

See the Selection Guide on page 61 for the General Microwave I-Q Vector Modulator model numbers.

Amplitude and Phase Calibration

General Microwave I-Q Vector modulators can be calibrated to provide precision control on both amplitude and phase over their full rated dynamic range. The calibration is performed using a vector network analyzer and a customer generated test program to achieve the utmost in accuracy. The most frequently used algorithm to accomplish this calibration is described nevein. This algorithm involves defining a unity circle and then employing an iterative technique to locate precise calibration values.

Many factors contribute to the overall accuracy that is active vable using any calibration routine for the I-Q vector modulator. It is important that the user fully understand the limitations of measurements in calibrating these units at microwave frequencies. For example, it is imperative that the desired calibration accuracy not exceed the accuracy and repeatability of the microwave test equipment. Another factor which must be included in the overall calibration accuracy is the effects of temperature on the modulator and the test equipment. Given that the user has a thorough understanding of verto network analyzer measurements, the following will be useful for generating a calibration program for a digitally controlled I-Q vector modulator (Note that an analog controlled unit can be calibrated in the same fashion using the relationship that 000 hex equals zero volts and FFF hex equals ten volts on the I and Q controls.)

1.0 The calibration routine is performed at discrete frequencies in the band of interest. The calibration will be valid over an interval of frequencies centered at the calibration frequency and will be limited by the 展別用原規則 amplitude and phase errors that occur as frequency is varied. The highest calibration accuracy will occur with minimum frequency interval size. However this

may require an excessive amount of calibration time and data storage. It is recommended that a calibration interval of 100 to 200 MHz be used in the center of the frequency range of the vector modulator and 25 MHz be used at the band edges. The optimum calibration interval for any user must be determined empirically by insuring that the maximum phase and amplitude error over the frequency calibration interval is within the desired limits.

2.0 Once the calibration interval and the calibration frequency have been chosen, the next step is to define the I and Q axes and the magnitude of the unit circle. For this example, the I axis is defined to be the horizontal axis on the I-Q plane with control word 000 (hex) being equivalent to a vector of approximate magnitude 1.0 at an angle of zero degrees. In the same fashion the Q axis is defined to be the vertical axis on the I-Q plane with control word 000 (hex) equivalent to a vector of approximately magnitude 1.0 at an angle of 90 degrees. Note that for both I and Q, the magnitude zero vector is approximately 7FF (hex) and the magnitude -1.0 vector occurs as FFF (hex). Following this procedure the definition of the I-Q plane is arrived at per the table below:

TABLE 2			
I CONTROL (hex)	Q CONTROL (hex)	APPROX. VECTOR	
000	7FF	1.0 ANG 0°	
FFF	7FF	1.0 ANG 180°	
7FF	000	1.0 (HG 90°	
7FF	FFF	2.0 ANG 270°	

大川原期 拱 子 村 村

展別開棚

Amplitude and Phase Calibration

- 3.0 The magnitude of the unit circle is determined by finding the maximum insection loss at the calibration frequency in each of the four states in table 2 above. Since by nature the Q plane is a square and not a circle (see figure 6), the maximum insertion loss will occur at one of these four states. Once the maximum insertion loss is determined, the I or Q values of the other three states in table 2 are adjusted to meet the same maximum insertion loss level. Note that only either for Q should be adjusted to increase insertion loss at any state, not both. The I or Q value that is initially set to 7FF (which is approximately the center of the IQ plane) is not varied during this part of the calibration since the amplitude of the unit circle is not affected by small changes in the control input.
- **4.0** Having thus defined the unit circle, the next step is to scale the I and Q axes to allow for computation of I and Q values given the desired amplitude and phase. If the I and Q axes were perfectly linear and each consisted of 4096 equal increments for a 12 bit control), it would be possible to achieve the desired amplitude and phase shift using only the sine and cosine relationships given in figure 6. In order to approach the ideal case, the land Q values for each of the four states given in table 2 must be scaled if they differ from 000 or FFF (note that the control input at 7FF is not varied in this step). The scaling entails taking the difference between 2048 digital counts (equal to one half of the 12 bit control) and the number of counts required to equalize the insertion loss of each of the four states required for the unit circle derived from step 3.0. For example, assume that the I value at zero degrees (I=000, Q=7FF), is the maximum insertion loss of the four states and that in order to achieve the same level of insertion loss at 180° (nominal value I=FFF, Q=7FF), I must be lowered by 127 counts such that the new value for 180° on the unity circle is I=F80, Q=7FF. In this case the I axis for I<0 (in the second and third quarrants) is limited to 1921 counts instead of 2048. Thus when the algorithm is determining the equivalent value for a desired amplitude and phase occur ing lix the first or fourth quadrants, the calculated value for I=R*cos I is multiplied by 2048 and the result subtracted from 2048 (1=7FF, the origin). When, in the same example, this calculation is done for a vector that occurs in the

second by third quadrants, the calculated value for I= R*cos [] will be multiplied by 1921 and the result added to 2048 (I=7FF) to find the desired I value (reference the I scale at the bottom of figure 6). The scale value will be called SCALE in calculations given in step 5.2. While this scaling is not precise, it is sufficient to enable the algorithm to establish the boundary of the I-Q plane such that any desired amplitude and phase calibration point can be achieved with a minimum of iterations.

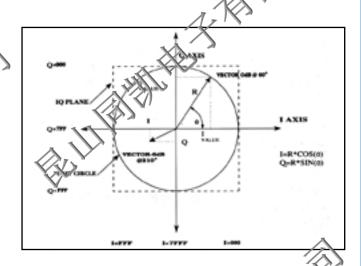


FIGURE 6 I-Q Vector Model

5.0 Once the scaling of the axes has been accomplished, the zero degree point on the unity circle is stored and normalized on the vector analyzer. The control word for this poin will be approximately I=000, Q=7FF and all succeeding phase and amplitude values will be referenced to this point. Note that the I control word will differ from 000 if it is not the maximum insertion loss state of the four states listed in table 2. The Q control word will be equal to 7FF. An algorithm to find any desired amplitude and phase with respect to the normalized unit circle zero degree point can be constructed from the following procedure: 川原淵川港

Amplitude and Phase Calibration

- **5.1** Convert the desired amplitude to a ratio such that the desired amplitude and phase can be expressed as a magnitude (R) and phase (I). This is the desired phase and amplitude change with respect to the normalized point obtained in step 5.0.
- **5.2** Solve for the required values of I and Q and multiply by appropriate scaling factor as outlined in step 4.0. I = $(R^*\cos \square)^*$ SCALE, Q = $(R^*\sin \square)^*$ SCALE. This process is essentially changing from polar coordinates (amplitude and phase) to rectangular coordinates I and Q.
- 5.3 Change I-Q modulator control word to the value obtained above and measure the resultant amplitude and phase. Compare the difference between the desired vector (at the calibration frequency) and the measured vector. This difference vector will be adjusted by successive iterations until its amplitude and phase error from the desired value is less than the desired calibration accuracy value. From experience, accuracy values of 0.1 dB and 1 degree are reasonable calibration limits for atterpation levels below 20 dB. However higher accuracy is achievable with careful measurements.

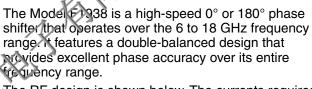
hunting time. Repeat this process until the desired point is reached within the accuracy limits.

Complete calibration is usually performed by generating sets of constant amplitude circles on the I-Q plane. Data points can readily be interpolated over the plane and therefore only a limited number of actual calibration points are required. Our experience shows that calibration points taken every 22.5 degrees around a constant amplitude circle with a linear interpolation of I and Q values to find intermediate phase angles is sufficient to achieve high accuracy. Constant amplitude circles should be calibrated every 0.5 dB for the first two dB above in sertion loss and 1.0 dB increments beyond that level. Interpolation between constant amplitude circles is also useful in minimizing data collection. For applications that require high speed (<1.0 µsec) variations between amplitude and phase states, the entire 10 plane can be calibrated, interpolated and the results stored for each frequency interval. Where speed is not critical, an interpolation routine can be run in real time and thus the data storage can be minimized. Typical calibrations using this technique should provide amplitude accuracy of ±0.2 dB and phase accuracy of ±2.0 degrees over a 10 dB dynamic range for each frequency calibration

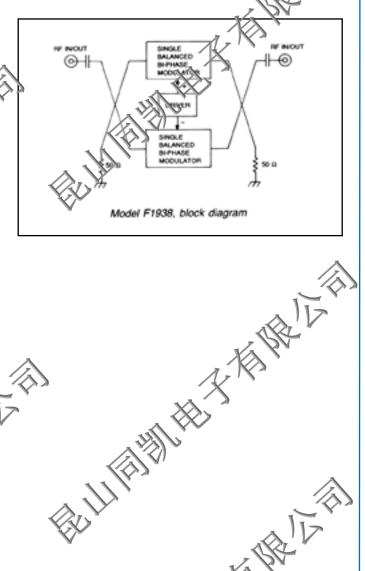
Further improvements in accuracy can be obtained by the following:

- Tightening up the error limits at each calibration point
- Reducing the frequency interval
- Maintaining tight control of temperature less than ±3 degrees C)

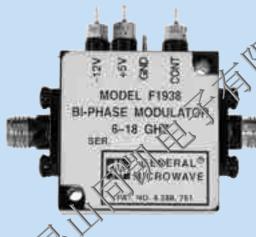
法川原規則法


Phase Shifters and I- Modulators Selection Guide

SHIFTERS/FREQUENCY TRANSLATORS BI-PHASE MODULATORS I.Q. VECTOR MODULATORS


1.4.7201	OIX NODO		
0.5 2.0 6.0 8.0 12.0 18.0 24 40	MODEL	PAGE	COMMENTS
0.5—2	7720A/7820		Phase shifter/Frequency translator
6.0	7722A/7822		Phase shifter/Frequency translator,
4.0	7724A/7824	-	Phase shifter/Frequency translator,
6.0 18.0	7728A/7828	157	Phase shifter/Frequency (ranslator
8.0 12.4	7728-NB-0812	_	Narrow Band Phase Shifter
12 ——— 14.5	7728-NB-1214	1	Narrow Sand Phase Shifter
6.0 18.0	7928A	163	Miniature Phase shifter/Frequency translator
6.0	F1938	138	Pi-Fliase modulator
0.5—2.0	7120/7220	11/	I.Q. Vector modulator, digital/analog
2.0—6.0	7122/7222		I.Q. Vector modulator, digital/analog
4.0	7124/7224	141	I.Q. Vector modulator, digital/analog
6.0 18.0	7128/7228		I.Q. Vector modulator, digital/analog
2.0	7218	146	I.Q. Vector modulator, digitally controlled
2.0	7322/7422		I.Q. Vector modulator, High Dynamic Range
6.0 18.0	7328/7428	150	I.Q. Vector modulator, High Dynamic Range
16.024.0	7329/7429		I.Q. Vector modulator, High Dynamic Range
6.018.0	7328H	155	I.Q. Vector modulator, High Speed High Dynamic Range
18.0 ——— 40.0	7929		MMW Phase Shifter
18.0=21.4	7929-NB-1821		Narrow Band Phase Shifter
20 31.0	7929-NB-2731	334	Narrow Sal of Phase Shifter
33.2 - 36.0	7929-NB-3336	,	Nanow Sand Phase Shifter
37.0 = 40.0	7929-NB-3740	$\langle \langle \rangle$	Narrow Band Phase Shifter
14.7		17/	
THE STATE OF THE S	1		
			1, 1
37.0 = 40.0			
		<u>^</u>	17/10
			7) A.
	A 1	///	Narrow Band Phase Shifter
	137	Y	
	107		

Model F1938 Bi-Phase Modulator


- Frequency range: 6-18 GHz
- Differential phase shift: 180° ±10°
- High speed, 5 risec (10-90% RF)
- Low VSWR and insertion loss
- Small size, light weight

The RF design is shown below. The currents required to switch the unit between states are provided by the integrated driver, which is controlled by an external logic signal.

是川原規則

Model F1938

Model F1938 Specifications

PERFORMANCE	CHARACTERIS	ric(s)
_ // _ / \ _	. /	- LX

...180° ≥10° Differential Phase Shift(1).....

Witching Characteristics(2)

.20 nsec max ON Time..... ... 20 nsec max OFF Time Rise Time5 nsec max Fall Time.....5 nsec max

根子斯根证 Insertion Loss(1)6 to 16 GHz, 3 dB max >16 to 18 GHz, 3.5 dB max

VSWR⁽¹⁾2.0 max

Change of Insertion Loss

with Phase Shift 1.0 dB max Modulation Rate......10 MHz max

Power Handling Capabilit

Without Performance

Degradation.....1W cw or peak

Survival Power.2W average, 25W peak (1µsec max

pulse width)

Power Supply Requirements+5V +6%, 65mA

-12 to -15V, 20 mA

ntrol Characteristics

control Input Impedance Schottky TTL, two-unit load. (A unit

load is 2 mA sink current and 50 µA

source current.)

to +0.8V) and logic "1" (+2.0 to +5.0V)

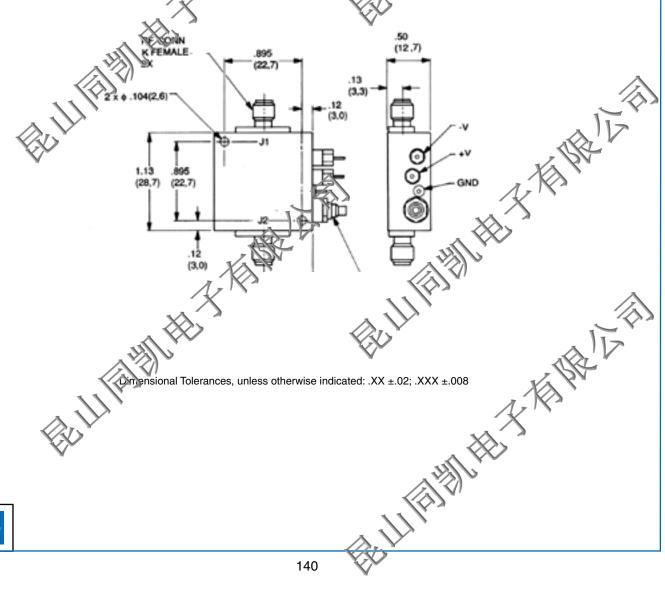
switches phase by 180°.

(1) With Option 85, within Frequency Band of 16 to 18 GHz will be:

a. Insertion Loss: 4 dB max b. Differential Phase Shift. 193° ±15°

c. VSWR: 2.2:1 max

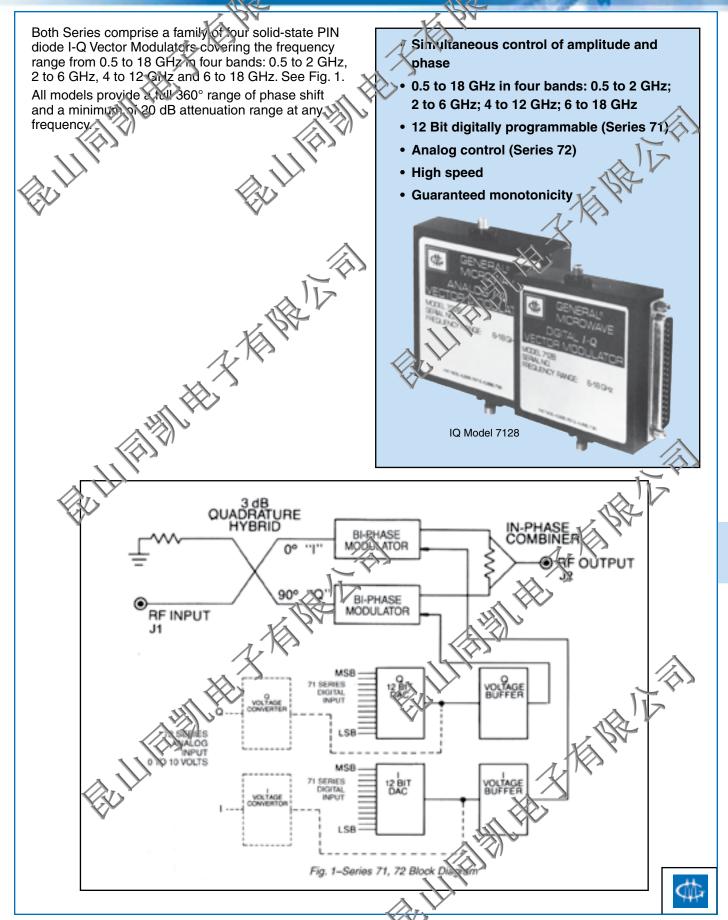
(2) As measured with a phase bridge.



Model F1938 **Specifications**

OPTION (G09) POPRONMENTAL RATINGS

Operating Temperature	
Range	-65° to +110°C
Non-Operating Temper	rature
Range	–65° to +125°C
Humidity	MIL-STD-202F, Method 103B,
	Cond. B (96 hrs. at 95%)
Snock	MIL-STD-202F Method 213B, Cond. B (75G, 6 msec)
Vibration	MIL-STD-202F, Method 204D, Cond. B (.06" double amplitude or 15G, whichever is less)
Altitude	MIL-STD-202F, Method 105C, Cond. B (50,000 it.)
Temp. Cycling	MIL-STD-20?F, Method 107D,


Option No.	Description
3	SMA female control connector
7	Two K male RF connectors
10	One K (J1) male and one K female (J2) RF connector
33	EMI filter solder-type control terminal
85	SMA RF connectors (see note (1) page 63 for specification change with this Option)
G09	Guaranteco to meet Environmental
	Ratincs
G12	BoHS Compliant
	<<>> -

nsional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

Series 71, 12 Bit Digital and Series 72 Analog I-Q Vector Modulators

Series 71, 12 Bit Digital and Series 72 Analog I-Q Vector Modulations

THEORY OF OPERATION

The block diagram of the I-Q Vector Modulator is shown in Figure 1. An RF signal incident on a 3 dB quadrature hybrid is divided into two equal outputs, with a 90° phase difference between them. The inphase, or 0°, charge is designated the I channel and the Quadrature, or 90°, channel is designated the Q channel. Each signal passes through a biphase modulator which sets the 0° or 180° state and the attenuation level for both the I and Q paths. The outputs of the I and Q path are combined to yield the resultant vector which may fall anywhere within the bounded area shown in Figure 2. Any signal applied to the I-Q Vector Modulator can be shifted in phase and adjusted in amplitude by applying the following relationships:

- Let the desired attenuation level = X dB and the desired phase shift = □° (with respect to 0 dB and 0° reference states).
- 2. The normalized output voltage magnitude is given by: $|V| = 10^{-(x/20)}$.
- 3. The values of the I and Q attenuator control inputs are then expressed as:

and

Figure 3 shows the nominal value of I and Q vs. either digital word (Series $\stackrel{?}{\sim}$ 1) or analog voltage (Series 72). Thus, to achieve an attenuation level of 3 dB with a phace offset of 112.5° (with respect to 0 dB and 0° reference states) the values of I and Q can be calculated as follows:

$$V = 10^{-(3/20)} = 0.707$$

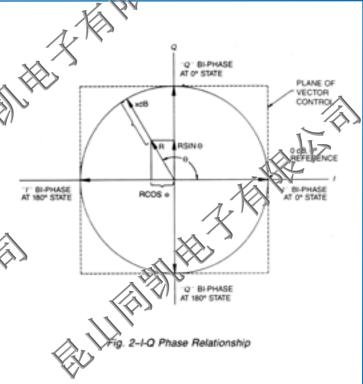
$$I = 0.707 \cos (112.5^{\circ}) = -.027$$

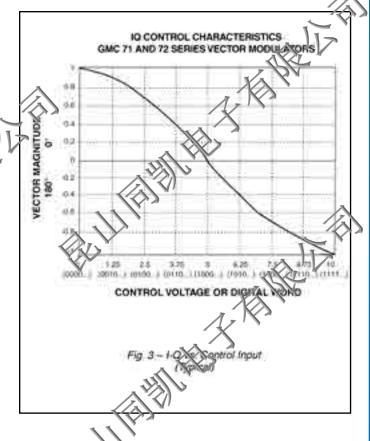
$$Q = 0.707 \sin (112.5^{\circ}) = +0.65$$

From Figure 3, the control inputs to yield the desired amplitude and phase are approximately:

Analog Units (72 Series)

Digital Units (71 Series)


I = 5.78 volts


100101000000

Q = 2.84 volts

010010001011

While these values for I and Q will yield an output signal whose amplitude and chase are close to the nominal values over the entire operating frequency range of the vector modulator, the use of an iterative measurement procedure will determine the I and Q inputs which exactly define the desired parameter at any selected frequency.

Series 71/72 Specifications

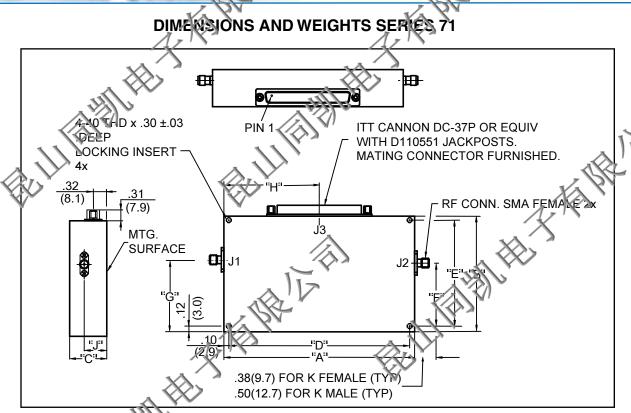
	- XA \
DEDECDMANCE	
PENFUNIVIANUE	CHARACTERISTICS

/ - /		/ - /					
MODEL	7120/7220	7122/7222	7124/7224	7128/7228			
FREQUENCY	0.5-2.0 GHz	2.0-6.0 GHz	4.0-12.0 GHz	6.0-18.0 GHz			
INSERTION LOSS	13 👀	11 dB	12 dB	12 dB			
VSWR (MAX)	161	1.8:1	1.8:1	2.0:1			
POWER HANDLING WITHOUT PERFORMANCE DEGRADATION	7 dBm	7 dBm +20 dBm		#20 dbm			
SURVIVAL POWER (MAX)	1W						
ABSOLUTE INSERTION PHASE ACCURACY VS. FREQUENCY (MAX)	±15°						
VARIATION OF PHASE VS. TEMPERATURE (MAX)	±0.1 deg. °C						
ATTENUATION RANGE (MIN)	(X)						
VARIATION OF AMPLITUDE VS. TEMPERATURE (MAX)	0.02 dB/ °C						
RESPONSE TIME (MAX)	0.5 μsec						
POWER SUPPLY	-12 to -15V @ 70 mA +12 to +15V @ 70 mA						
CONTROL INPUT 71 SERIES 72 SERIES	12 bit TTL for both I and Q inputs 0 to +10V DC for both I and Q inputs						
CONTROL INPUT IMPEDANCE 71 SERIES 72 SERIES		•	A max kw	A PLANT			

OPTION (G09) ENVIRONMENTAL PATINGS

01 11011 (0.00) =1111111	
Operating Temperature Range	. –54°C to 100°C
Non-Operating Temperature Range	. –65°C to +125°C
Humidity	Mi≥ STD-202F, Method 103B, Cond. B (96 hrs. at 95%)
Shock	. MIL-STD-202F, Method 213B, Cond. B (75G, 6 msec)
Vibration	MIL-STD-202F, Method 204D, Cond. B (.06" double amplitude or 15G, whichever is less)
Altitude	. MIL-STD-202F, Method 105C, Cond. B (50,000 ft.)
Temp. Cycling	MIL-STD-202F, Method 107D, Cond. A, 5 cycles

ACCESSORY FURNISHED

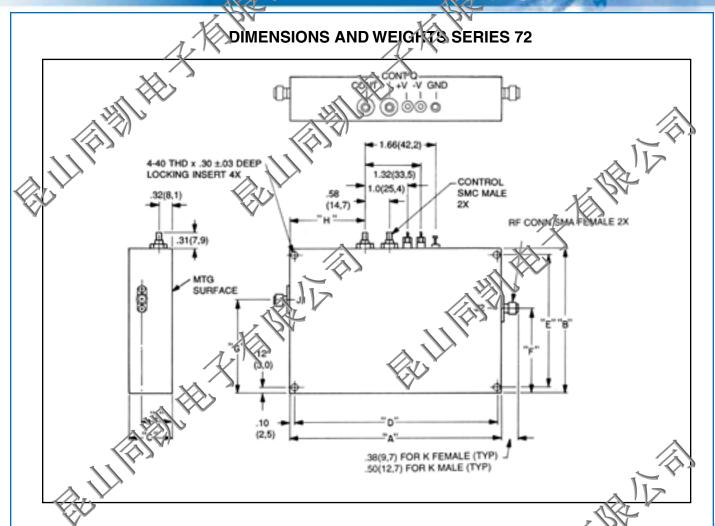

Mating power/comrol connector (Series 71 only)

AVAILABLE OPTIONS

Option No.	Description
<u>7</u>	Two type K male RF connectors
() (d)	One type K male (J2) and che SMA female (J1) RF connector
G09	Guaranteed to meet Environmental
	Ratings
G12	RoHS Compliant

Series 71/72 Specifications

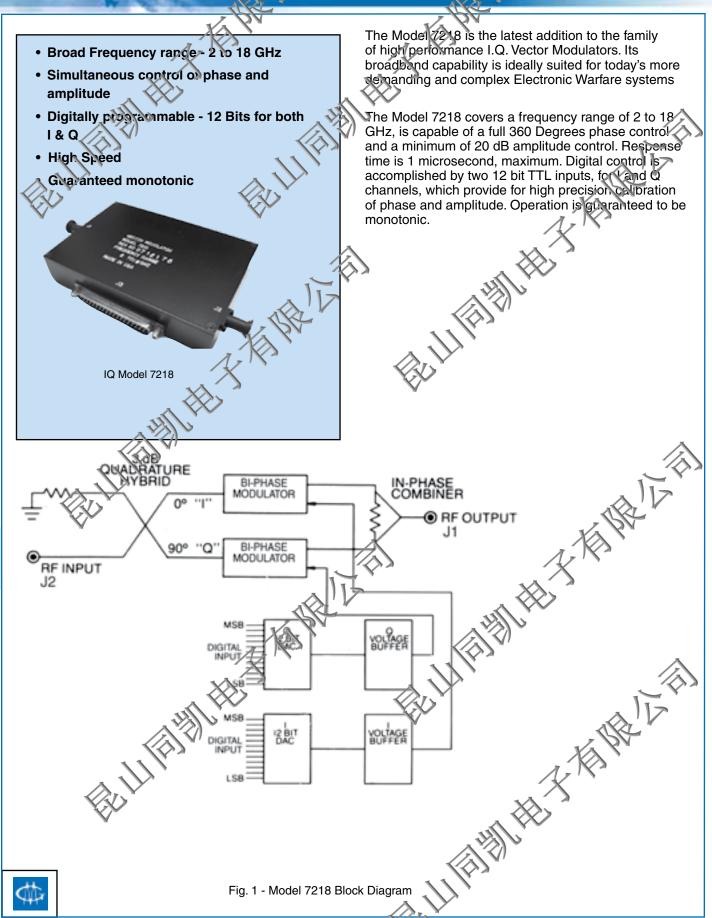
MODEL	A	В	С	D	E	F	G	Н	J
7120	4.95±.03 (125,7)	3.38±.03 (85,9)	1.02 (25,9)	4.75±.01 (120,7)	3.12±.01 (79,2)	2.62 (66,5)	1.69 (42,9)	2.47 (62,9)	.73 (18,5)
7)22	3.25±.03 (82,6)	3.25±.03 (82,6)	.85 (21,6)	3.05±.01 (77,5)	3.00±.01 (76,2)	1.63 (41,4)	1.99 (50,5) 1.83	1.63 (41,4)	.64 (16,3)
7128	3.00±.03 (76,2)	3.00±.03 (76,2)	.96 (24,4)	2.80±.01 (71,1)	2.75±.01 (69,9)	1.50 (38,1)	(46,5) 1.63 (41,4)	1.50	76 (19,3)


J3 PIN FUNCTION					
PIN	FUNCTION	PIN	FUNCTION		
1	I-5	20	I-4		
2	I-6	21	I-7		
3	I-8	22	I-3		
4	I-9	23	I-2		
5	I-10	24	I-1 (LSB)		
6	I-11	25	I-12 (MSE)		
7	N/C	26	N/C		
8	+12 to +15V	27	N/C		
9	GND	28	GND		
10	GND	29	N/C		
11	-12 to -15V	30	N/C		
12	Q-3	3/	N/C		
13	Q-2	32	Q-4		
14	Q-1 (LSB)	33	N/C		
15	Q-5	34	N/C		
16	Q-6	35	Q-12 (MSB)		
17	Q-7	36	Q-11		
18	Q-8	37	Q-10		
19	Q-9				

1			_		
Jų	MODEL	WEIGHT (APPROX)			
	7120	13 oz. (369 gr.)			
	7122	10 oz. (284 gr.)			
	7124	10 oz. (284 gr.)	1		
	7128	9 oz. (255 gr.)	112		
S	s otherwise indicate	3.XX ±.02; .XXX ±.008			

Dimensional Tolerances, unless otherwise indicated: .X \times ±.02; .XXX ±.008

Series 71/72 Specifications


									4	
MODEL	Α	В	С	9/	E	F	G /		J	
7220	4.95±.03 (125,7)	3.38±.03 (85,9)	1.02 (25,9)	4.75±.01 (129,6)	3.12±.01 (79,2)	1.68 (42,7)	.75	1.75 (44,5)	.73 (18,5)	
7222	3.25±.03	3.25±.03		3.05±.01	3.00±.01	1,63	1.99 (60,5)	.90	.64	
7224	(82,6)	(82,6)	(21,6)	(77,5)	(76,2)	(41,4)	1.83 (46,5)	(22,9)	(16,3)	
7228	3.00±.03 (76,2)	3.00±.03 (76,2)	.96 (24,4)	2.80±.01 (71,1)	2.75±.01 (69,9)	1.50 (38,1)	1.63 (41,4)	.78 (19,8)	.76 (19,3)	
	Mir	X /							را د	
		М	ODEL	WE	EIGHT (AF	PPROX)		1		
11/	~		7220		13 oz. (36	9 gr.)	7	(A)	•	
7//			7222		10 oz. (28	4 gr.)	3	()		
KV			7224		10 oz. (284 gr.)			A		
W		-	7228		9 oz. (25	5 gr.) 💉				

MODEL	WEIGHT (APPROX)
7220	13 oz. (369 gr.)
7222	10 oz. (284 gr.)
7224	10 oz. (284 gr.)
7228	9 oz. (255 gr.)

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.003

Model 7218 Broadband I-Q Vector Modulator

Model 7218 Broadband I-Q Vector Modulator

THEORY OF OPERATION

The block diagram of the Q Vector Modulator is shown in Figure 1. An RF signal incident on a 3 dB quadrature hybrid is vivided into two equal outputs, with a 90° phase difference between them. The inphase, or 0°, channel is designated the I channel and the Quadrature, or 90°, channel is designated the Q channel. Each signal passes through a biphase modulator which sets the 0° or 180° state and the attenuation level for both the I and Q paths. The outputs of the I and Q path are combined to yield the resultant vector which may fall anywhere within the bounded area shown in Figure 2. Any signal applied to the I-Q Vector Modulator can be shifted in phase and adjusted in amplitude by applying the following relationships:

- 1. Let the desired attenuation level = X dB and the desired phase shift = \square° (with respect to 0 dB and 0° reference states).
- 2. The normalized output voltage magnitude is given by: $|V| = 10^{-(x/20)}$.
- 3. The values of the I and Q attenuator control inputs are then expressed as:

and

Figure 3 shows the nominal value of I and Q vs. either digital word or analog voltage Thus, to achieve an attenuation level of 3 dB with a phase offset of 112.5° (with respect to 0 dB and 0° reference states) the values of and Q can be calculated as follows:

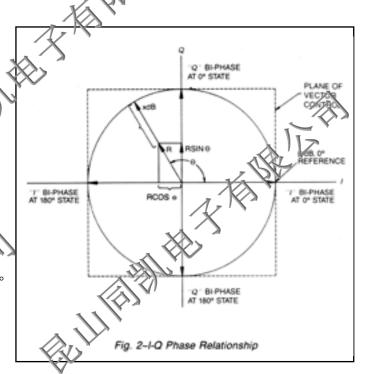
$$V = 10^{-(3/20)} = 0.707$$

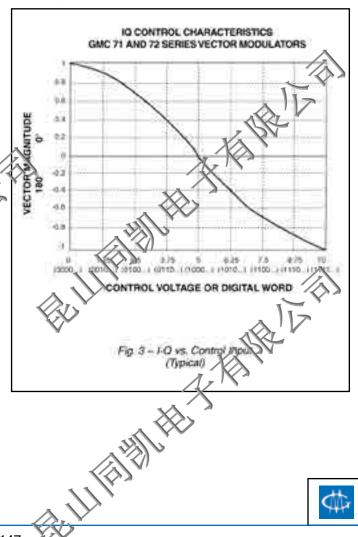
$$I = 0.707 \cos (112.5^{\circ}) = -.027$$

$$Q = 0.707 \sin (112.5^{\circ}) = +0.65$$

From Figure 3, the control inputs to yield the desired amplitude and phase are approximately:

Analog Units

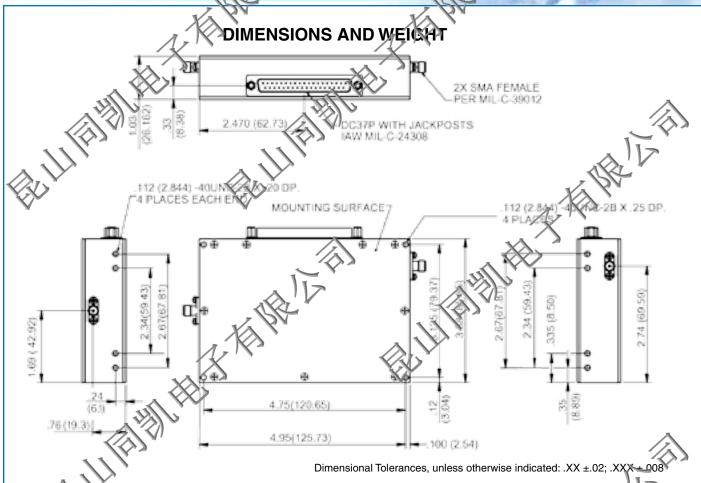

I = 5.78 volts


10010 000000

Q = 2.84 volts

010010001011

While these values for I and Q will yield an output signal whose amplitude and phase are close to the nominal values over the entire operating frequency range of the vector mod law, the use of an iterative measurement procedure will determine the I and Q inputs which exactly define the desired parameter at any selected frequency.



Model 7218 Specifications

PIRSORMANCE CHARAC	CTERSINGS				
PARAMETER	SPECIFICATION				
OPERATING FREQUENCY RANGE	2.0 - 18.0 GHz				
J.Bano 1	2 - 6 GHz				
Band 2	6 - 18 GHz				
Band Switching Speed, max.	250 nanoseconds				
INSERTION LOSS (MAX)	16 dB				
VSWR (MAX)	2.2.1				
POWER HANDLING CAPABILITY					
Without performance degradation	+10 dBm				
Survival	1 W				
ABSOLUTE INSERTION PHASE ACCURACY VS. FREQUENCY (MAX)	±15° (in each band)				
VARIATION OF PHASE VS. TEMPERATURE (MAX)	±0.1 deg./ °C				
ATTENUATION RANGE (MIN)	20 dB				
VARIATION OF AMPLITUDE VS. TEMPERATURE (MAX)	0.02 dB/ °C				
RESPONSE TIME (MAX)	1.0 µsec				
POWEN SUPPLY	+5 V ±2% @ 200 mA, max +12 to +15V @ 150 mA, max -5.2 V ±2% @ 400 mA, max -12 to -15V @ 150 m \ n ax				
MONOTONICITY	GUARANTEED				
CONTROL INPUT	12 BIT TTL FOR ROTH I & Q INPUTS				
CONNECTORS					
RF Input/output	SMA Female, 2X				
Control/Power	Cannon DC-37P or Equivalent				
TEMPERATURE RANCE					
Operating	-55 °C to +85 °C				
Sigrage	-65 °C to +125 °C				
148					

Model 7218 Specifications

IGHT (APPROX) 16oz. (453 gr.)

	J3 PIN FUNCTION								
PIN	FUNCTION	PIN	FUNCTION						
1	I-5	20	I-4						
2	I-6	21	1-7						
3	I-8	22	I-3						
4	I-9	23	I-2						
5	I-10	24	I-1 / SEV						
6	I-11	25	J-12 (MSB)						
7	BAND 1 (notes1& 2)	26	NC						
8	+12 to +15V	27	+5V ±2%						
9	GND	28	GND						
10	GND	29	EAND 1 (notes1& 2)						
11	−12 to −15V	-30	-5.2V ±2%						
12	Q-3	31	BAND 2 (notes1& 2)						
13	Q-2	32	Q-4						
14	Q-1 (LSB)	33	BAND 2 (notes1& 2)						
15	Q.5	34	N/C						
16	Q-6	35	Q-12 (MSB)						
17	Q.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	36	Q-11						
18	0-8	37	Q-10						
19 ৰ	/27 Q-9								

ACCESSORY FURNISH

Mating power/control connect

AVAILABLE OF

Option No. Description

Guaranteed to meet Environmental

Ratings

大馬服/小 **RoHS Compliant**

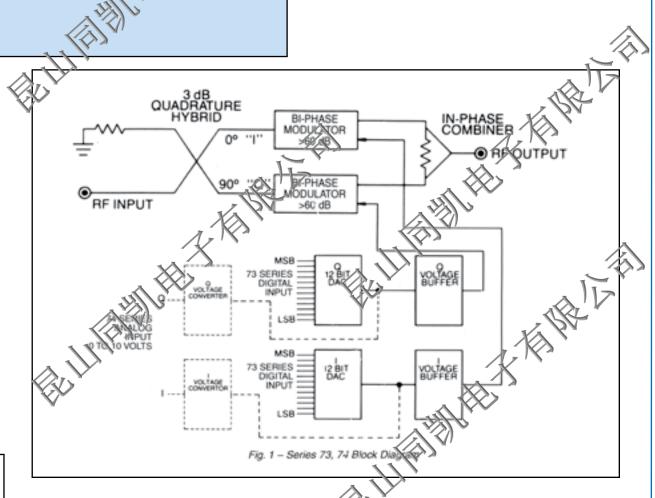
NOTES:

1. BAND SELECT: Band 1 (2 to 6 GHz) - Apply TTL 0 to Pin 7 or Pin 29 Band 2 (6 to 18 GHz) - Apply TTL 0 to Pin 31 of Pin 83

2. With no band selected, there will be maximum Isolation between J1 and J2

Series 73, 12 Bit Digital and Series 74 Analog High Dynamic Range I-Q Vector Modulations

- Simultaneous control of amplitude and phase over a 50 dB dynamic range
- 2 to 24 GHz in three pands:
 2 to 6 GHz; 6 to 18 GHz; 16 to 24 GHz


IQ Model 7328

- 12 Bit digitally programmable (Series 73)
- Analog control (Series 74)
- High speed
- Guaranteed monotonicity

The new Series 73/74 represents the latest addition to General Microwave's existing line of PIN Diode I.Q. Vector Modulators. Their performance has been ennanced to provide a higher dynamic range of attenuation for today's more demanding system applications.

All models incorporate multiple bi-phase modulator sections to provide in excess of 60 dB attenuation range at any frequency. All models are also capable of a full 360° range of phase shift. The series covers a frequency range of 2 GHz to 24 GHz in three bands: 2 GHz to 6 GHz, 6 GHz to 18 GHz, and 16 GHz to 24 GHz. A simplified block diagram is shown in Fig. 1.

展別開棚機

Series 73/74 Specifications

THEORY OF OPERATION

The block diagram of the LQ Vector Modulator is shown in Figure 1. An RF signal incident on a 3 dB quadrature hybrid is divided into two equal outputs, with a 90° phase difference between them. The inphase, or 0°, spannel is designated the I channel and the Quadrature or 90°, channel is designated the Q channel Each signal passes through a biphase modulator which sets the 0° or 180° state and the attenuation level for both the I and Q paths. The outputs of the I and Q path are combined to yield the resultant vector which may fall anywhere within the bounded area shown in Figure 2. Any signal applied to the I-Q Vector Modulator can be shifted in phase and adjusted in amplitude by applying the following relationships:

- Let the desired attenuation level = X dB and the desired phase shift = □° (with respect to 0 dB and 0° reference states).
- 2. The normalized output voltage magnitude is given by: $|V| = 10^{-(x/20)}$.
- 3. The values of the I and Q attenuator control inputs are then expressed as:

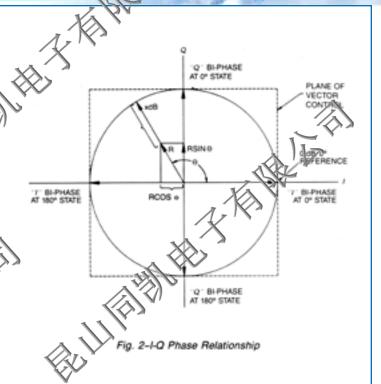
$$I = V \circ \circ \Gamma$$

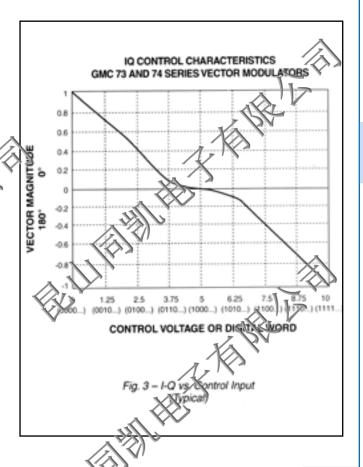
and

Figure 3 shows the nominal value of I and Q vs. either digital word (Series 73) or analog voltage (Series 74). Thus, to achieve an attenuation level of 3 dB with a chase offset of 112.5° (with respect to 0 dB and 0° reference states) the values of I and Q can be calculated as follows:

$$V = 10^{-(3/20)} = 0.707$$

$$I = 0.707 \cos (112.5^{\circ}) = -.027$$


$$Q = 0.707 \sin (112.5^{\circ}) = +0.65$$


From Figure 3, the control inputs to yield the desired amplitude and phase are approximately:

$$I = 7.81 \text{ volts}$$

$$Q = 1.50 \text{ volts}$$

While these values for I and Q win yield an output signal whose amplitude and phase are close to the nominal values over the shire operating frequency range of the vector modulator, the use of an iterative measurement procedure will determine the I and Q inputs which exactly define the desired parameter at any selected frequency.

PERFORMANCE CHARACTERISTICS								
MODEL A	7322/7422	7328/7428	7329/7429					
FREQUENCY	2.0-6.0 GHz	6.0-18.0 GHz	16.0-24.0 GHz					
INSERTION LOSS	16 dB	6-16 GHz 20 dB >16-18 GHz 23 dB	18 dB					
VSWR (MAX)	1.3 (1)	2.3:1	2.0:1 16-22 GHz 2.2:1 >22-24 GHz					
POWER HANDLING WITHOUT PERFORMANCE DEGRADATION		+20 dBm typical	AS TO SERVICE A SERVICE AS TO					
SURVIVAL POWER (MAX)	V	1W	N.X.					
ABSOLUTE INSERTION PHASE ACCURACY VS. FREQUENCY (MAX)	±2	25°	±15° 16-22 GHz ±20° >22-24 GHz					
VARIATION OF PHASE VS. TEMPERATURE (MAX)		±0.2 deg.(°C						
ATTENUATION RANGE (MIN)		50 dB						
VARIATION OF AMPLITUDE VS. TEMPERATURE (MAX)		9.04 dB/ °C						
RESPONSE TIME (MAX)		1.0 µsec						
POWER SUPPLY		-12 to -15V @ 100 mA +12 to +15V @ 100 mA						
CONTROL INPUT 73 SERIES 74 SERIES		it TTL for both I and Q in 10V DC for both I and Q i						
CONTROLINPUT IMPEDANCE 73 SERIES 74 SERIES		40 μ A max 10 kW						

OPTION (G09) ENVIRONMENTAL RA

Operating Temperature

Range –54°C to +100°C

Non-Operating

Temperature Range -65°C to +125°C

Humidity MIL-STD-2021, Method 103B,

Cond B (96 hrs. at 95%) MIL S/TD-202F, Method 213B, Shock.....

Cond. B (75G, 6 msec)

MIL-STD-202F, Method Vibration....

> 204D, Cond. B (.06" double amplitude or 15G, whichever

is less)

Altitude MIL-STD-202F, Method 105C,

Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-202F, Method 107D,

Cond. A, 5 cycles

ACCESSORY FURN

Mating power/control connector (Series 73 only)

AVAILABLE OPTIONS

Option No. Description

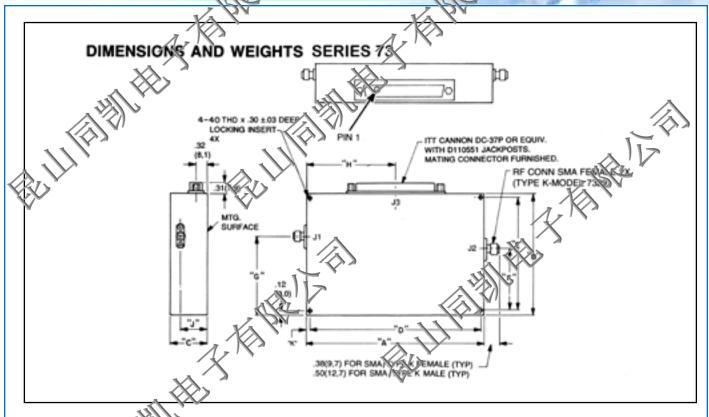
Two SMA (Type K-Model 7X29) male RI

connectors

One SMA (Type K-Model 7x?9) male 10

(J2) and one SMA (Type K-Model 7X29)

female (J1) RF connector


G09 Meeting the specified Environmental

Ratings

RoHS Como G12

Series 73/74 Specifications

	17/1	V								
MODEL		В	С	D	E	F	G	Н	J	K
7322	4 00±.03 (101,6)	3.00±.03 (76,2)	.88 (22,4)	3.80±.01 (96,5)	2.75±.01 (69,9)	1.50 (38,1)	1.90 (48,3)	2.00 (50,8)	.68 (17,3)	.10
1358	3.12±.03 (79,2)	3.00±.03 (76,2)	.88 (22,4)	2.92± .01 (74,2)	2.75±.01 (69,9)	1.50 (38,1)	1.82 (46,2)	1.56 (39,6)	.68 (173)	.10 (2,9)
7329	3.25±.03 (82,6)	3.00±.03 (76,2)	.82 (20,8)	3.00±.01 (76,2)	2.75±.01 (69,9)	1.50 (38,1)	1.69 (42,9)	1.69 (41,1)	.%5 ((6,3)	.12 (3,0)

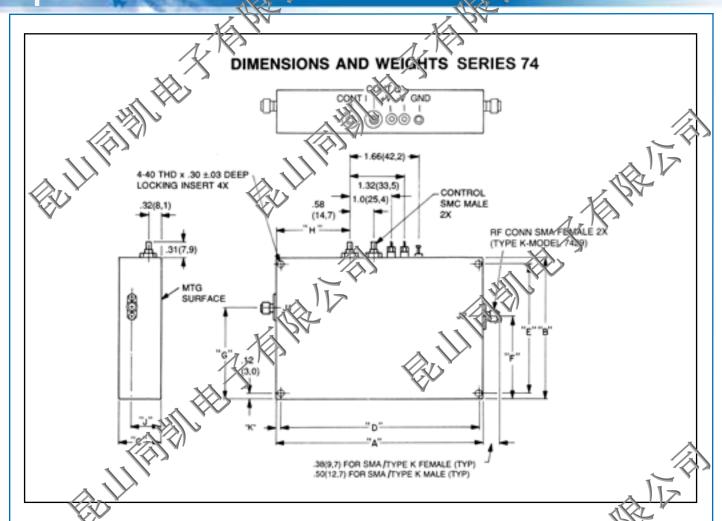
	J3 PIN FUNCTION								
PIN	FUNCTION	PIN	FUNCTION						
1	I-5	20	I-4						
2	I-6	21	I-7						
3	I-8	22	I-3 _ <						
4	I-9	23	I-2						
5	I-10	24	I-1 (LSB)						
6	l-11	25	112 (MSB)						
7	N/C	26	(JUC)						
8	+12 to +15V	27	N/C						
9	GND	23	₩ GND						
10	GND /	29	N/C						
11	-12 to -15V	30	N/C						
12	Q-3	31	N/C						
13	0/2	32	Q-4						
14	Q-1 (L\$B)	33	N/C						
15	Q-5	34	N/C						
16	Q-6	35	Q-12 (MSB)						
17	Q-7	36	Q-11						
18	Q-8	37	Q-10						
19	Q-9								

MODEL	WEIGHT (APPROX)
7322	12 oz. (341 gr.)
7328	11 oz. (312 gr.)
7323	11 oz. (312 gr.)

AVAILABLE OPTIONS

Option No. Description

G09 Guaranteed to meet Environmental


Ratings

G12 RoHS Compliant

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.000

Series 73/74 Specifications

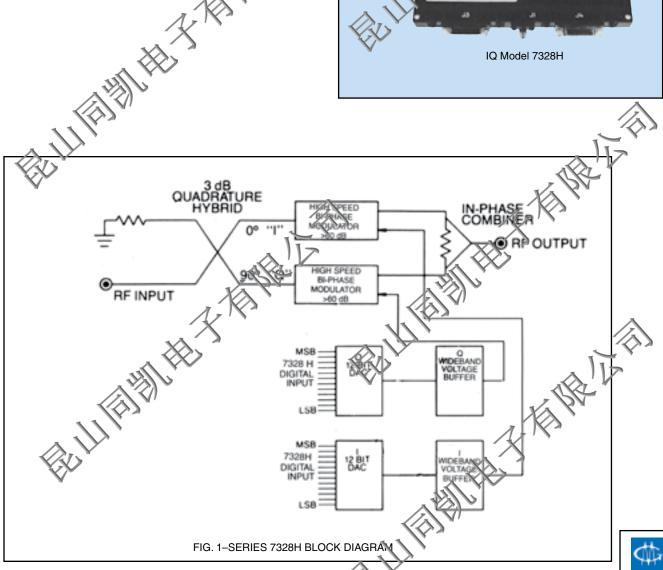
- 4									-/-	A 4
MODEL	Α	В	С	D	E	F	G	Н	, 1	K
7422	4.00±.03 (101,6)	3.00±.03 (76,2)	.88 (22,4)	3.80±.01 (96,5)	2.75±.01 (69,9)	1.50 (38,1)	1.90 (48,3)	1.28 (32,5)	.68 (17,3)	.10 (2,9)
7428	3.12±.03 (79,2)	3.00±.03 (76,2)	.88 (22,4)	2.92± .01 (74,2)	2.75±.01 (69,9)	1.50 (38,1)	1.82 (46,2)	.83 (21,1)	.68 (17,3)	.10 (2,9)
7429	3.25±.03 (82,6)	3.00±.03 (76,2)	.82 (20,8)	3.00±.01 (76.2)	2.75±.01 (69,9)	1.50 (38,1)	1.69 (42.9)	.90 (22,9)	.65 (16,5)	.12 (3,0)

	(82,6)	(76,2)	(20,8)	(69,9)	(38,1)	(42.9)	(22,9)	(16,5)	(3,0)	ı
			X		1	1/1/2			//	
			MODEL	WEIGHT	(APP)10X				11-	\$23
		THE	7422	12 oz.	(341 gr.)			1	STIV.	
	<	(y)	7428	11 oz.	(312 gr.)			XX	81	
	111		7429	11 oz.	(312 gr.)			1/K		
<u> </u>		Dim	ensional Toleran	ces, unless otherwis	se indicated:	.XX = (02)	XXX ±.008			
				154						

Model 7328l∜High Speed, ₩gh Dynamic Range I-Q Vector Modulator

The Model 7328H represents the intest advancement to General Microwave's comprehensive product line of PIN diode I-Q Vector Modulators. Its response time has been significantly reduced, resulting in an enhanced modulation rate performance of 50 MHz to better serve today's more demanding system applications.

In addition to the high speed, the Model 7328H incorporates multiple bi-phase modulator sections to provide in excess of 60 dB attenuation through 16 GHz and is capable of a full 360 degrees of phase shift. Thus, the unit will provide high speed and simultaneous control of amplitude and phase over the full frequency range of 6 to 18 GHz. A simplified block diagram is shown in Fig. 1.


THEORY

The Theory of Operation of the Model 7328H is the same as the Series 73 units. The RF and Driver 1 portions of the IQ Modulator have been modified to enable modulation rates up to 50 MHz.

- High Speed Modulation Rate of better than 50 MHz
- Wide Frequency Range 6 to 18 GHz
- Simultaneous control of amplitude and phase over a 60 dB dynamic range
- Digitally Programmable I&Q 12 Bit ECL control
- Guaranteed monotonicity

IQ Model 7328H

Model 7328H **Specifications**

PERFORMANCE CHARACTERISTICS

SPECIFICATION **PARAMETER**

Frequency Range, min ... 6.0 to 18.0 GHz Insertion Loss, max ... 6 to 10 GHz 18.5 dB

10 to 12 GHz 20 db

12 to 18 GHz

VSWR, max 6 to 10 GHz

10 to 18 GH2

Power Handling, max Myhout Performance

Degradation -5 dBm Typical

Survival..... +27 dBm

Absolute Insertion Phase Accuracy

vs Frequency...... 6 to 12 GHz ±25°

12 to 18 GHz ±3

Variation of Phase

vs Temperature, max..... ±0.2°/°C

Attenuation range, min

6 to 16 GHz.....

>16 to 18 GHz.....

Variation of Amplitude

0.04 dB/°C vs Temperature, max...

Modulation Rate, min. 50 MHz

Control Input...... /)...... 12 Bit ECL for both I&Q

Control Characteristics,

..... See Figure 2 I&Q, typ

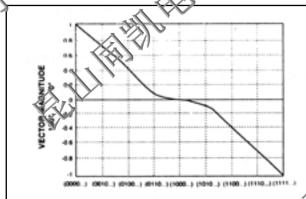
Control Input Impedance 100 ohms

(to -2V supply)

ower Supply......+12V @ 350 mA

-12V @ 130 mA -5.2V @ 340 mA

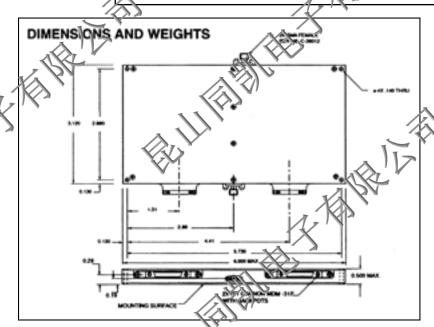
-2V @ 280 mA


AVAILABLE OPTIONS

Option No. **Description**

G09 Guaranteed to meet Enviro

Ratings


RoHS Compliant G12

DIGITAL WORD

FIG. 2 TYPICAL IQ CONTROL CHARA

POV	DCSIQNATION	5- 13/0 A	en _4(n)
PIN NO.	SIGNAL	PIN NO.	SIGNEY
,	CLK+	17	-ax
2	00	10	(600)
3	Ø1	19	100
4	02	30	Z/N/A
5	0.3	24	V buo
6	04	1200	GND
7	05	74	0402
	06	24	SNO
9	x07	25	CMD
10	Day Y	26	(AND
13	YNO	27	SND
12	Vp/re	26	GND
fJ	011	29	CNO
14	CND	30	+127
15	-5.2V	31	-12V
16	-2V		

Model 7328H weight 8.8 oz. (249 gr.) approximate

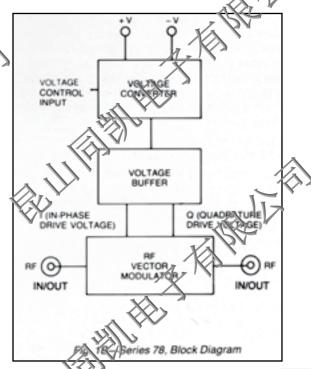
Dimensional Tolerances, unless otherwise indicated. XX ±.02; .XXX ±.008

Series 77, 10 Bit Digital and Series 78 Analog 360° Phase Shifters & Frequency Translators

Both Series, 77 and 78, complise a family of eight solid-state PIN diode phase shifters covering the frequency range from 0.5 to 18 GHz in four bands: 0.5 to 2 GHz, 2 to 6 GHz, 4 to 12 GHz and 6 to 18 GHz. All models provide a full 360° range of phase shift and may also be used for frequency translation applications

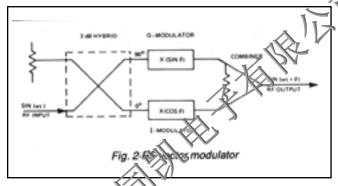
Each unit is an integrated assembly of an RF vector modulator and a driver circuit, consisting of a 10-bit D/A converter and a voltage buffer in the Series 77 digital units (see Fig. 1A) and a voltage converter and buffer in the Series 78 analog continuation (See Fig. 1 B).

The voltage converter in the Series 78 consists of an A/D converter followed by a 10-bit D/A converter, and converts a continuous analog input voltage into discrete steps of 0.35°.


0.5 to 18 GHz in four bands: 0.5 to 2 GHz: 2 to 6 GHz; 4 to 12 GHz; 6 to 18 GHz

- 10 Bit digitally programmable (Series 77)
- Analog control (Series 78)
- High speed
- Guaranteed monotonicity

Phase Shifter Model 7728A



Series 77/78 Specifications

Phase Shift

Phase shift is achieved utilizing the RF vector modulator approach shown in Fig. 2. The 3 dB hybrid coupler divides the RF signal into two quadrature components which are then modulated in proportion to the sine and count of the desired phase shift. The signals are then combined in-phase to yield the phase-shifted our out.

Excellent phase accuracy and PM/AM performance (see Figs. 4 and 5) are achieved by using linearized double balanced modulators. In their main operating bands, phase accuracy is better than ±10° 10 GHz and ±12° to 18 GHz. This phase accuracy can be extended to cover the band edges by using a built-in frequency correction circuit. Switching speed is better than 500 nsec.

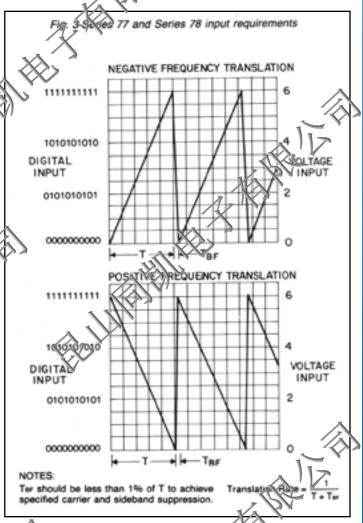
Frequency Translation (Serrodyning)

Special attention in the design of the units has been paid to those characteristics which affect their performance as frequency translators. These include minimizing M-to-AM conversion, use of high slew rate drivers, and optimizing phase shift linearity with applied signal. As a result, carrier and sideband suppression levels of over 25 and 20 dB, respectively, are obtained in the main bands. The same carrier and sideband performance can be realized over the fully stretch band when the internal frequency correction circuit is employed.

See Fig. 3 for input voltage control requirements for Series 77 and 78 when used as a frequency translator.

On special order, frequency translators can be provided for operation over respect bandwidths with suppression levels of up to 35 B. Consult the factory for special requirements,

PERFORMANCE CNARACTERISTICS


SERIES 77 ~

Control......10 bit TTL

Logic Input

Logic "0" (Bit OFF)...-0.3 to +0.8V @ 500 μA max **Logic "1" (Bit ON).....**+2.0 to +5.0V @ 100 μA max

SERVES 78

Control Voltage0 to +6V Sensitivity......23.4 0 V/LSB Resolution

Input Resistance.... ...2K ohms

COMMON O BOTH SERIES 77 & 78

Power Supply+5V to +5.5V @ ★00 ★14 max +12 to +15V @ 100 mA max -12 to -15V @ 90 mA max

Power Handling Capability

Without Performance

..., 20 dBm (+7 dBm for 7720A, 9820) Degradation

.430 dBm Survival..... Harmonics.....-30 dBc

Phase Variation 0.1°/°C

PHASE SHIFTER SPECIFICATIONS

	MODEL NOS.	FREQUENCY RANGE (GHz)	INSERTION LOSS (Max.)	VSWR (Max.)	ACCURACY (Max.)	PM/AM (Max.)
	7720A & 7829	Main Cand ⁽¹⁾ 0.7 - 1.9 Stretch Band ⁽²⁾ 0.5 - 2.0 Band Edges ⁽³⁾ 0.5 - 0.7 & 1.9 2.0	1.5 dB max 13.0 dB typ 13.0 dB max	1.75	±10° max ±15° typ ±10° max	±1.1 dB max ±2.5 dB typ ±1.1 dB max
	77224 & 7822	Main Band ⁽¹⁾ 2.6 - 5.2 Stretch Band ⁽²⁾ 2.0 - 6.0 Band Edges ⁽³⁾ 2.0 - 2.6 % 5.2 - 6.0	10.0 dB max 11.0 dB typ 11.0 dB max	1.6	±10° max ±15° typ ±10° max	±1.1 dB max ±1.5 dl3 typ ±4:1 dB max
V.	7724A & 7824	Main Band ⁽¹⁾ 4.5-10.5 Stretch Band ⁽²⁾ 4.0-12.0 Band Edges ⁽³⁾ 4.0 - 4.5 & 10.5 - 12.0	10.5 dB max 12.0 dB max 12.0 dB max	1.8	±10° mak ±15° typ ±10° nax	±1.1 dB max ±2.0 dB typ ±1.1 dB max
	7728A & 7828	Main Band ⁽¹⁾ 8.0-18.0 Stretch Band ⁽²⁾ 6.0-18.0 Band Edge ⁽³⁾ 6.0 to 8.0	12.0 dB max 12.0 dB typ 12.0 dB max	2.0	±\2° max ±\5° typ ±12° max	±1.25 dB max ±2.0 dB typ ±1.25 dB max

OTHER SPECIFICATIONS

Switching Speed (50% TTL to within 10° of Final Phase Value); 500 nsec Max. Minimum phase shift range:

Series 77: 360° in 1024 Steps (10-bit)

Series 78: 360° @ 60°/Volt

PREQUENCY TRANSLATOR SPECIFICATIONS

TRANSLATION RATE (Min.)	CARRIER SUPPRESSION (Min.)	SIDEBAND SUPPRESSION (Min.)	INSERTION LOSS VARIATION (Max.) with translation rates
0 to 50 kHz ⁽⁴⁾	Main Band: 25 dB Stretch Band: 18 dB	Main Band: 20 dB Stretch Band: 15 dB	1 dB
>50 to 500 kHz ⁽⁴⁾	Main Band: 20 dB Stretch Band: 15 dB	Main Band: 18 dB Stretch Band: 12 dB	3 dB

NOTES:

BAND SELECTION BY PIN 3 OF J3 LOGIC LEVEL ASSIGNMENT

- (1) For Main Band optimized operation, apply logic HIGH to \(n 3 or leave it floating.
- (2) For **Stretch Band** operation, apply logic HIGH to oin 3 or leave it floating. While performance is optimized over the **Main Band**, the reduced performance as stated
 - in Stretch Band specifications apply to band edges..
- (3) For Band Edges optimized operation, apply logic LOW to pin 3.
- 4) All specifications are met using five or more most significant bits for 0 to 50 KHz translation rates. For 50-500 kHz translation rates, only the four most significant bits are used.

Narrow Band Phase Shifters

In addition to the standard wide band Phase Shifters, KRATOS General Microwave is offering Narrow Band Phase Shifters. These units are available both as standard catalog units and as customized units meeting specific customer's requirements. The narrow band units have better performances and lower prices.

Frequency Range	Model Number	Phase Accuracy	PM/AM Insertion Loss
8.0 to 12.4 GHz	7728-NB-0812	± 6° (max.)	± 0.6 db 12.0 dB (max.)
12.0 to 14.5 GHz	7728-NB-1214	± 6° (max.)	2.0 6 dB 12.0 dB (max.)

THE RESERVE TO SERVE **Series 77/78 Specifications** TYPICAL PEDEORMANCE 12 13 FREQUENCY (GHz) PM/AM over the full operating band with frequency correction set to Main Band (20gic "1"). with frequency correction set to Band Edge Banó, Banó Figure 4 The security of the security o +180.0 +108.0 +72.0 +36.0 +0.0 -108.0 -144.04

160

Specifications

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

-54°C to +100°C Range.....

Non-Operating

Temperature/Range-65°C to +125°C

.....MIL-STD-202F. Method 103B, Cond. B (96 hrs. at

95%)

MIL-STX-202F, Method 213B, Cond. B (75G,

6 msec)

Vibration..... .MIL-STD-202F, Method

204D, Cond. B (.06" double amplitude or 15G

whichever is less)

Altitude .MIL-STD-202F, Method 105C, Cond. B (50,000 ft.)

Temp. CyclingMIL-STD-202F, Method 107D, Cond. A, 5 cycles

ACCESSORY FURNISHED

Mating power/control connector

AVAILABLE OPTIONS

G12

Option No.	Description V
7	Two SMA male RF connectors
10	One SMA male (42) and one SMA female (J1) RF connector
G09	Guaranteed to meet Environmental

bmpliant

ONS AND WEIGH

	MODEL	A	В) c	D	E	F	G	Н	J	К	WEIGHT (APPROX)
	7720A	4.95±.03	3.32± 03	1.02 (25,9)	4.75±.01	3.12±.01	2.62	1.69	2.48	.73 (18,5)	.32 (8,1)	13 oz. (369 gr.)
	7820	(125.7)	(85,9)	1.48 (37,6)	(120,7)	(79,2)	(66,5)	(42,9)	(62,9)	1.18 (30,0)	.78 (19,8)	15 oz. (425 gr.)
	7722 A			.84 (21,3)				1.99		.66 (16,8)	.32 (8,1)	9 oz. (255 gr.)
	7822	3.25±.03	3.25±.03	1.25 (31,8)	3.05±.01	3.00 ± .01	1.63	(50,5)	1.63	1.07 (27,2)	.72 (18,3)	10 oz. (251 gr.)
1	√724A	(82,6)	(82,6)	.84 (21,3)	(77,5)	(76,2)	(41,4)	1.83	(41,4)	.66 (16,8)	.32 (8,1)	9 oz. (253 yr.)
	7824			1.25 (31,8)				(46,5)		1.07 (27,2)	.72 (18,3)	10 vz. (284 gr.)
	7728A	2.50±.03	3.00±.03	.88 (22,4)	2.30±.01	2.75±.01	1.50	1.63	1.25	.71 (18,0)	.39 (9,9)	6 oz. (170 gr.)
	7828	(63,5)	(76,2)	1.19 (30,2)	(58,4)	(63,9)	(38,1)	(41,4)	(31,8)	1.02 (35.9)	.6) (17,6)	8 oz. (227 gr.)

NOTE:

(1) Unused logic bits must be grounded.
(2) Must not exceed + VVDC. See footnote (3) below.
(3) Must not be greater than +0.3 VDC above voltage at pin 15.

	PIN FUNCTIONS							
\	Fui	nction						
Pin No.	Series 77 ⁽¹⁾	Series 78						
	-12V to -15V	-12V to -15V						
2 3	+12V to +15V	+12V to +15V						
3	Freq. Correction Circuit Select ⁽³⁾	Freq. Correction						
	"0" = Band Edge	Circuit Select "0" = Band Edge						
4	1.4°(3)	Not Used						
4 5	5.6° ⁽³⁾	No Used						
6	45.0° (3)	Not Used						
7	180.0∘ (MSB) ⁽³⁾	Not Used						
8	90.0°(3)	Not Used						
9	Ground	Ground (Sig)						
10 11	0.7	Ground (PWR) Not Used						
12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Not Used						
13 /	.30	Not Used						
14	0.35° (LSB)	Control Voltage						
15	+5V to +5.5 VDC	+5V to +5.5 VDC						
1/								

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

pecifications .31(7,9) eel 7720A and 7820, the designation names are الماركة (الماركة switched to J2 and J2 is switched to J1) MTG. SURFACE .10 (2,5) THD x .30 ±.03 DEEP KING INSERT 4x) FOR SMA FEMALE (TYP) (TYP) FOR SMA MALE (TYP) MATING CONNECTOR FURNISH WITH DD110551 JACKPOST ITT CANNON DA-15P OR E RF CONN SMA FEMALE 2x Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX 5.30

Model 7928A Miniaturized 8 Bit 360° Phase Shifter/Freguency Translator

The Model 7928A is a miniatulized, hermetically sealed PIN diode phase spiriter covering the frequency range from 6 to 18 GHz providing a full 360° range of variable phase shift. It can also be used to perform frequency translation:

The unit is an integrated assembly of an RF vector modulator and a driver circuit consisting of an 8-bit DV converter and a voltage buffer. See Figure 1.

PHASE SHIFT

Phase shifting is achieved utilizing the F/F vector modulator approach shown in Figure 2. The 3-dB hybrid coupler divides the RF signal into two quadrature components which are then biased in proportion to the sine and cosine of the desired phase shift. The signals are then combined in-phase to yield desired output.

ACCURACY

Improved phase accuracy and PM/AM performance are achieved by using double-balanced hi-phase linear amplitude modulators. In the main operating band, overall phase accuracy is better than 12°. The same phase accuracy can be achieved at the band edges by using a built-in frequency por ection circuit.

Switching speed is better than 500 nsec.

FREQUENCY TRANSLATION (SERRODYNING)

In the design of the Model 7928A special attention has been paid to those characteristics which affect its performance as a frequency translator. These include minimizing PM-to-AM conversion, use of high slew rate drivers, and optimizing phase shift linearity with applied signal. As a result, carrier and sideband suppression levels of over 25 and 20 dB, respectively, are obtained in the main band. The same carrier and sideband performance can be realized over the full stretch band when the internal frequency correction circuit is employed. See Fig. 3 for input correction requirements.

On special order, frequency translators can be provided for operation over reduced bandwidths with suppression levels of up to 40 dis Consult the factory for such requirements.

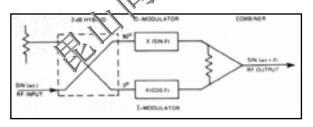


Fig. 2-RF Vector Modulator

- 360° range
- High speed
- Digitally programmable (8 Bits)
- Guaranteed monotonicity
- Hermetically Sealed
- Miniaturized: less than 1.5 in?

Phase Shifter Model 7928A

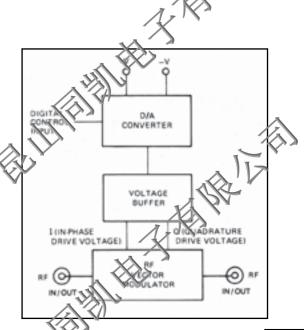


Fig. 1-Model 7928A, block diagram

Model 7928A Specifications

SE SHIFTER SPECIFICATION

FREQUENCY RANGE (GHz)	INSERTION VSWR (Max.)	ACCURACY ⁽¹⁾ (Max.)	PM/AM ⁽¹⁾ (Max.)
Main Band 8.0-18.0	12.0 35 2.0:1	±12°	±1.25 dB
Stretch Band 6.0-18.0		±15°	±2.0 dB

ATOR SPECIFICATIONS FREQUENCY TRANSL

TRANSLATION RATE (Min.)	CARSIER® SUPPRESSION (Min.)	SIDE BAND ⁽¹⁾ SUPPRESSION (Min.)	INSERTION LOSS VARIATION (Max.) with translation rate of:
0 to 500 kHz ⁽²⁾	Main Band:	Main Band:	200 kHz:
	25 dB	20 dB	1 dB
0 to 300 km2	Stretch Band (3):	Stretch Band ⁽³⁾ :	500 kHz:
	18 dB	15 dB	3 dB

- When operating as a Phase Shifter outside the Main 3s nd Frequency Range, a TTL Low (0) applied to the J3 Power/Control Connector Freq. Correction Pin (pin R) will result in Bank Etige Frequencies exhibiting enhanced performance characteristics. The resultant Accuracy and PM/AM specifications will be the same as mose shown for the Main Band Frequency Range. When using the unit as a Frequency Translator, similar enhanced performance can be achieved for Carrier & Sideband Suppression.
 All specifications are met using only the five most significant bits for translation rates of 0 to 200 kHz. For translation rates of 201 to 500 kHz, only 4 most significant bits are used.
 Specifications for the Street Band are Paried.
- (3) Specifications for the Strech Band are typical.

PERFORMANCE COMBACTERISTICS

Phase Shift Range Variation	Power Handling Capability Without Performance Degradation	+10 dBm
Control Input. Switching Speed (50% TTL to within 10° of Final Phase Value)	Survival power Power Supply Requirements	(typically +13 dBrh) +30 dBm +5V ±5%, 80 mA max +12 to +15V, 10 mA max -12 to -15V, 95 mA max

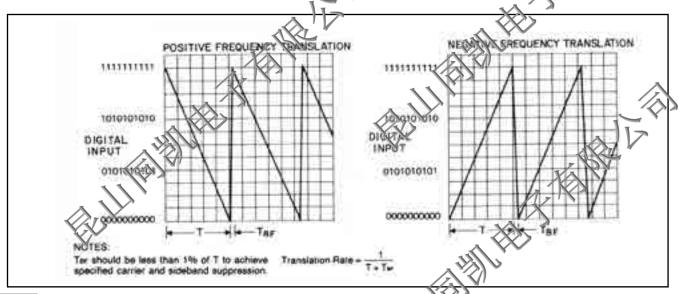


Fig. 3-Model 7928A Control input requirements

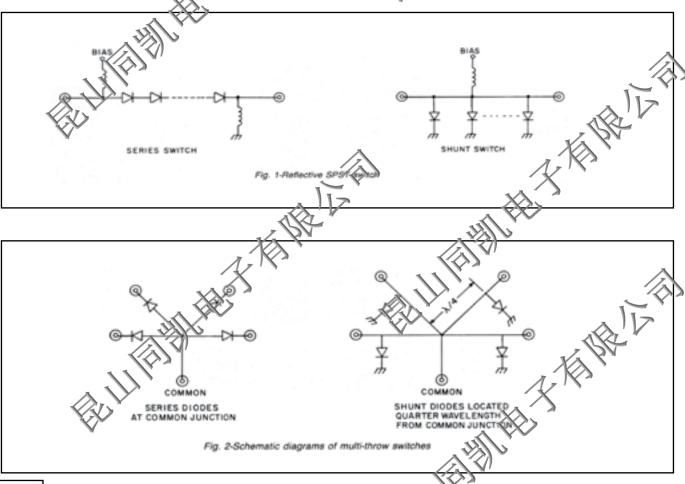
Model 7928A Specifications

AVA (2) **ACCESSORY FURNISHES BLE OPTIONS** Mating power/control connector Option No. **Description** 7 Two SMA male RF connectors OPTION (G09) ENVIRONMENTAL RATINGS 10 One SMA male (J1), and one SMA **Operating Temperature** female (J2) RF connector Range-54°C to +95°C 49 High Rel screening Non-Operating (see page 384) Temporature Range-65°C to +125° G09 Guaranteed to meet Environmental Ratings Mo. Mo.

DIMENSIONS AND WEIGHT

\vee		PER MIZEC 39012
MODEL 7928A	PIN FUNCTIONS	OR SMA FEMALE (TYP)
PIN	FUNCTIONS	ARKING THIS SURFACE SOLVETTOR SMA MALE (TYP)
Α	Ground	
В	+5V	
С	-12 to -15V	Jelle T XX B PIN A
D	1.4° (LSB)	SEE DETAIL
E	2.8°	- X750V - 1 (\$\)
F	5.6°	/(4)(5)\rightarrow\ri
н	22.5°	(36,1)
J	11.3°	(22,4)
K	90°	
L	180° (MSB)	
М	+12 to +15V	L MINISTRA
N	45°	SUPPLASE SUPPLASE
Р	GV	(40%)
R	Freq. Co rection	1 1 1 22 (5,6)
-	Circui Select	NAV
1	Band Edge	14 PIN CONN. PER -
11	1	MIL-C-28748
1	> '	14 PIN CONN. PER — MIL-C-28748 (WITH JACKPOSTS)
\sim		
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		× 3
Y/V		
A		Model 7928A Wt. 4.0 oz (113gr.) approx.
	Dimonalanal	
	Dimensional	Tolerances: unless otherwise indicated: .XX ±.02, XXX ±.008
		//-\ \ \ / ·

Switches


General Microwave switches cover the frequency range from 100 MHz to 40 GHz and are available in various topologies ranging from single-pole single-throw (SPST) to single-pole eight-throw (SP8T) in both reflective and non-reflective configurations, and a Non-reflective SP16T and

SWITCHTOROLOGY

There are two fundamental methods of connecting PIN diodes to a transmission line to provide a switching function, in series with the transmission line so that RF power is conducted when the PIN diode is forward biased and reflected when reverse biased; or in shunt with the transmission line so that the RF power is conducted when the diode is reverse biased and reflected when forward biased. A simple reflective SPST switch can be designed utilizing one or more PIN diodes in either configuration as shown in Fig. 1.

A multi-throw switch essentially consists of a combination of SPST switches connected to a common junction and biased so that each switch port can be enabled individually. The common junction of the switch must be designed to minimize the resistive

and reactive loading presented by the OFF ports in order to obtain low insertion loss and VSWR for the ON port. There are two basic methods of realizing a multi-throw switch common junction for optimum carlo mance over a broad frequency range. The first employs series mounted PIN diodes connected to the common junction. A path is selected by forward biasing its series diode and simultaneously reverse biasing all the other diodes. This provides the desired low loss path for the ON port with a minimum of loading from the OFF ports. The second method utilizes sount mounted PIN diodes located a quarter wavelength from the junction. The diode(s) of the selected ON port is reverse biased while the CFF ports are forward biased to create a short circuit across the transmission line. As a result of the quarter wavelength spacing, the short circuits are transformed to open circuits at the junction. By proper choice of transmission line impedances and minimization of stray reactance it is possible to construct a switch of this type with low insertion loss and VSWR over a three to one bandwidth. The schematic diagrams for both switches are shown in Fig. 2.

ABSORPTIVE SWITCHES

It is often desirable to have a PIN diode switch present a low VSWR in its OFF position as well as in its ON state in order to main an desired system performance. General Microwave offers a complete line of single and multi-throws be orptive switches which incorporate 50 terminations in each of the output ports. Fig. 3 shows the schematic diagrams of the two versions of absorptive (also known as Non-reflective or terminated) switches employed by GMC. The shunt termination is used in GMC's "all-series" configured absorptive switches which have a suffix ending in "I" or "W". This style of absorptive switch offers the minimum penalty in insertion loss due to the addition of the terminating elements. The series termination is used in GMC's high speed "series-shunt" configured absorptive switches since it provides the optimum in switching performance.

The common port of the standard absorptive multithrow switches in the GMC catalog will be reflective in the special circumstance when all costs are turned OFF. If there is a need for this port to remain matched under these conditions, this can be realized either by employing an additional port to which an external termination is connected of, in a custom design, by providing automatic connection of an internal termination to the complex port.

DEFINITION OF PARAMETERS

INSERTION LOS3 is the maximum loss measured in a 50 ohm system when only a single port of the switch is in the ON state.

ISOLAYON is the ratio of the power level when the switch port is ON to the power level measured when the switch port is OFF. In a multi-throw switch the isolation is measured with one of the other ports turned ON and terminated in 50 ohms.

VSWR is defined for the input and output ports of the selected ON path. For those switches with a "T," "W" or "HT" suffix, the VSWR is also defined for the OFF state.

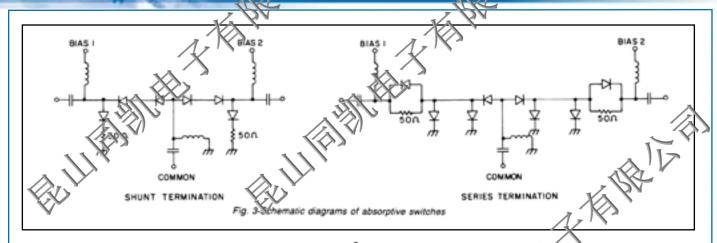
PHASE AND AMPLITUDE MATCHING

Switches are available on a custom basis with phase and/or amplitude matching. Matching can be either between ports of a switch, between like ports on different switches, or a combination of the two. The uniformity of broadband catalog switches is quite good and is usually better than ± 0.75 dB and ± 15 degrees over the entire operating frequency of the switch. Please consult the factory for special requirements.

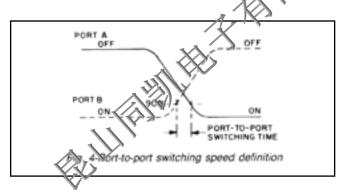
HARMONIC AND INTERMODICATION PRODUCTS

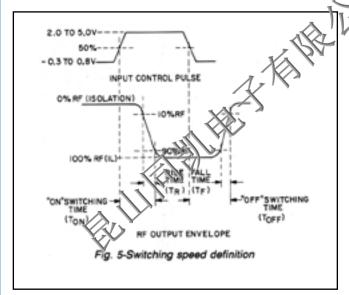
All PIN diode switches generate harmonics and inter-modulation products since the PIN diodes are fundamentally non-linear projects. The magnitude of these spurious signals is typically small in a switch since the diodes are usually either in their saturated forward biased state or in their reversed biased state. The physics of the PIN diode cause a cut-off frequency phenomena such that the level of harmonics and intermods greatly increase at low frequencies. These levels will vary with the minority carrier lifetime of the diode. Thus, a high speed switch operating below 500 MHz may have a second order intercept point of 35 dBm, while a slow switch operating at 8 GHz will have a second order intercept point of 70 dBm. Typical performance is as follows:

TYPICAL SWITCH INTERCEPT POINTS


SWITCH	FREQUENCY	FREQUENCY 2nd Order INTERCEPT	
HIGH SPEED	2.0 GHz	+50 db.m	+40 dBm
LOW SPEED	2.0 GHz	+65 a3m	+50 dBm

Since these levels vary significantly with frequency, switching speed, and RF topology, please consult the factory for specific needs in this area.


(1) For switches with internal video filters, specify Option 41, Option 42, or Option 43. These filters reduce the leakage as shown in the chart page 91.


Switches

Rise Time is measured between the 10% and 90% points of the square-law detected RF power when the unit is switched from full OFF to full ON. Sea Fig. 5.

Fall Time is the time between the 90% and 10% points of the square-law detected RF power when the unit is switched from full ON to full OFF.

On Time is measured from the 50% level of the input control signal to the 90% point of the square-law detected RF power when the unit is switched from full OFF to full ON.

Off Time is measured from the 50% level of the input control signal to the 10% point of the square-law detected RF power when the unit is switched from full ON to full OFF.

In addition to the above definitions, the following information about switching performance may be useful to the system designer.

Switching To Isolation – Although catalog switching speed specifications are usually defined to the 10% level of detected RF (equivalent to 10 dB isolation), the user of a switch may be more interested in the time the switch requires to reach rated isolation. This latter time is strongly dependent on the topology of the switch. For all-shunt mounted or combination is aries and shunt mounted topologies, the time to reach final isolation is usually less than twice the fall time. For an all-series topology, the time to reach final isolation may be as much as ten times the fall time.

Switching To Insertion Loss – For multi-throw switches, the ON time depends on whether the switch is being operated in a commutating or single port mode. In the former mode, switching speed is slower than in the latter due to the loading effect at the junction of the port turning OFF. All switching speed measurements at GMC are performed in the commutating mode.

(2) For a unit without an integrated driver, the specifications apply to conditions when it is driven by an appropriately shaped switching waveform.

VIDEO LEAKAGE

Video leakage refers to the spurious signals present at the RF ports of the switch when it is switched without an RF signal preser. These signals arise from the waveforms generated by the switch driver and, in particular, from the leading edge voltage spike required for high speed switching of PIN diodes. When measured in a 50 chm system, the magnitude of the video loakage can be as much as several volts. The frequency content is consentrated in the band below 200 MH2 athough neasurable levels for high speed switches are observed as high as 6.0 GHz. The magnitude of the but of band video loakage can be reduced significantly by the inclusion of high pass or "video filters" (1) in the switch. The General Microwave E-series switches are specially designed for low in-band video leakage, without sacrificing switching speed.

POWER HANDLING

The power handling of PIN diode switches is dependent on the RF topology, forward and reverse biasing levels, and speed of the switch. This catalog addresses both the maximum operating power levels and the survival limits of the components. Maximum operating limits are usually set at the power level which will cause the reversed biased diodes to begin conduction and thereby degrade the insertion loss, VSWR, or isolation of the switch. The survival power limits are based on the maximum ratings of the semiconductors in the switch. For special applications, significantly higher operational power levels can be provided, particularly for narrow band requirements. Please consult the factory for specific applications.

VIDEO LEAKAGE FILTER OPTIONS							
	Applicability: F91 and G91 Switch Series						
X		Peak (mV)	Bandwidth (MHz)				
Video Leakage wit	n Video Filter Options:	100 max	100				
	INSERTION LOSS	S DEGRADATION					
Option	Affected Ports	Frequency	Additional IL				
44	Common Port Only		0.1 dB				
ΔV		12.4-18 GHz	0.2 dB				
42	Output Ports Only	1-12.4 GHz	Q (GB				
V		12.4-18 GHz	0.2 03				
43	All Ports	1-12.4 GHz	02 dB				
	_ "/	12.4-18 GHz	0.4 dB				
	VSWR DEG	RADATION	λ. ΄ ΄ ΄ ΄				
Option	Affected Forus	Frequency	VSWR				
41, 42, 43	All Fons	1-4 GHz	1.7:1*				
	, (() '	4-18 GHz	No Change				

^{*} As shown for switches whose VSWr specification from 1-4 GHz is less than 1.7. No change for switches whose VSWR specification from 1-4 GHz is 1.7 or greater

OPTION 55 – EXTENDED FREQUENCIES

When Option 55 is applicable, a switch in our catalog that covers 1-18 GHz can be modified to cover 0.5 to 18 GHz with following specification changes:

- 1. Specification for insertion loss and isolation from 0.5 to 1.0 GHz is the same as the 1 to 2 GHz specification.
 - VSWR degrades to 2.0:1.
 - Insertion loss in the 12.4 to 18 GHz band increases by 0.3 dB. Consult factory for cost.

Switch Selection Guide

SWITCHES WITH INTEGRATED DRIVERS					
FREQUENCY FANGE (GHz)		MODEL OR	PAGE	COMMENTS	
0.1 0.2 0.5 1 2 4 8 12.4 18	40	SENES			
THE RE	EFLECTIVE	SPST SWITC	CHES		
0.1	40-	F9016	178	Wide Frequency Range	
0.2 4	11/2	F91 F9214A	180	Miniature broadband	
1		E9114H	275	Hermetically sealed	
(8)	40	F90	338	Millimeter Wave	
NON	-REFLECT	VE SPST SW	ITCHES	1,	
	■18	_* F192A	175	Ultra-broadband	
RI	FEL ECTIVE	SPAT SWITC			
0.1		F9025	187	Wigo Frequency Range	
0.1	- 15	F91, G91	107	Miniature broadband	
118	AVI V	F91AH	100	Miniature broadband, high-speed	
0.2 — 4	Plan		193		
		F92, G92	1//,	Miniature broadband	
3 4.5	9	F892	189	Octave-brand, high-speed	
1	18	E9120H	278	Hermetically sealed,	
11/1/1	40	F90	340	Millimeter Wave	
NON-REFLEC	CTIVE SP21	AND TRANS	FER SWIT	TCHES ^	
1/4/2	21	F9321T	184	Phase and Amplitude matched	
1	. 18	F91T, F91W, G91T, G91W	100	Miniature broadband	
¥		F91AHT	193	Miniature broadband high-speed	
0.24		F92T, G92T		Miniature broadbal d	
0.5	∎18	F940H	272	Broadband transfer switch	
1	18	E9120HT	278	Hermetically sealed,	
RI	EFLECTIVE	SP3T SWITC	HES	A \$\times\$	
	17/1/2	F91, G91		Min aure broadband	
1-		F91AH	200	Miniature broadband, high-speed	
0.24	1	F92, G92		Miniature broadband	
1	18	E9130H	282	Hermetically sealed, I	
- MON	-REFLECT			1	
THE PROPERTY.	-NEI LLOT		TILO		
1	. 18	F91T, F91W, G91T, G92W		Miniature broadband	
	. 10	F91AHT	200	Miniature broadbลกฝ high-speed	
0.2		F92T, G92T		Miniature broadband	
A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	18	E9130HT	282	Hermetically sealed,	
		20100111		Tomosa, Caron,	
#		٨	111		
		170	>		

Selection Guide (Cont.)

	SWITCHES WITH								I INTEGRATED DRIVERS (cont.)				
0.	1	0.2	FRE	QUENCY	FAN	GE (GHz) 8 12.	4 18	40	MODEL OA SEALES	PAGE	COMMENTS		
<u> </u>	•	0.2	0.0	$\overline{\langle}\rangle$,	0 12.	REFL	-	SP4T SWITC	CHEC	_		
				1			NEFE	LUI	F91, G91	JHE3	Miniature broadband		
		4	\Im	1			18 🧹		F91AH	204	Miniature broadband, high speed		
	1	0.1	\		4		11	1/2	F92, G92	204	Miniature broadband		
<u> </u>	1			1			18		E9140H	286	Hermetically sealed,		
						V.	N-RE	FLE	CTIVE SP4T SWITCHES				
V				2 —			2	:1	F9341T	208	Phase and Amplitude matched		
				1			18		F91T, F91W, G91T, G91W		Miniature broadband		
								1	F91AHT	204	Otra-proadband, high-speed		
		0.2			4			1/	F92T, G92T	1	Mniature broadband		
				1		V	S		E9140HT	286	Hermetically sealed, low video leakage		
					6	1, X	18		2578	211	Low-cost		
	118		2 = 36	F9043-C36	342	Output ports all on one side							
			2600	214	Output ports all on one side								
	REFLECTI					REFL	.ECTI	VE SP5T SWITC	CHES				
			<u> </u>				18		F91, G91	217	Miniature broadband		
		0.2	(T)	<u>, </u>	— 4				F92, G92				
	_<	0.5	\				18		ER-2260-UK	290	Hermetically Sealed		
	- 3	V				N	ION-RE	FLE	CTIVE SP5T SW	ITCHES			
				1			18		F91T F91W, G91T, G91W		Miniature byoadband		
		0.2			— 4				F92T, G92T	217			
							REFL	ECTI	VESP6T SWITCHES				
				1			18	55	F91, G91	004	A second second		
		0.2 —			— 4	JT.			F92, G92	221	Miniature broadband		
		0.	5 ——				18		FR-2260-UK	293	Hermetically Sealed		
						XX N	ION-RE	FLE	CTIVE SP6T SW	HES			
				2	1/2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		21	F9361T	275	Phase and Amplitude matchen		
				1			18		F91T, F91W, G91T, G91W	221	Miniature broadband		
		0.2 🕳	1	1/2	4				F92T, G92T	221	wiiiliature bioavo (10		
	18		2629	228	Output ports all on one side								
		X					REFL	ECTI	TIVE SP7T SWITCHES				
			4	1			18		F91, G91	232	Milwature broadband		
		0.2 —			— 4				F92, G92		Villadia biodabaria		

Switch Selection Guide (Cont.)

SWITCHES WITH INTEGRATED DRIVERS (cont.)							
FREQUENCY RANGE (GHz)		MODEL OR					
0.1 0.2 0.5 1 2 4 8 12.4	18 40	SERIES	PAGE	COMMENTS			
N THE	ION-RE	FLECTIVE SP7T SWIT	rches	Δ			
	18	F91T, F91W, G91T, G91W	000	Ministrus bussellessel			
0.24	1	F92T, G92T	232	Miniature broadband			
	REF	ECTIVE SP8T SWITC	CH				
1		F9180	236	Low-cost broadband			
	NON-R	EFLECTIVE SP8T SW	TTCH	X			
1-	—— 18	F9\80W	236	Low-vost broadband			
1-	—— 18	2353-B90	239	Rhase & Amp. Matched			
	NON-P	EFLECTIVE SP9T SW	TCH	(X) *			
8 —— 12	1/2	M2470-XO	242				
7.1	NON RE	FLECTIVE SP10T SW	NACH				
6	— 18	2553-B39	245	Phase & Amp. Matched			
1	— 18	KA-2970-LK	251				
0.02		KA-2060-VV	248				
	NON-RE	FLECTIVE SP12T SW	VITCH				
6	— 18	2553-B48	254	Phase & Amp. Matched			
√2 1, ¥	NON-RE	EFLECTIVE SP13T SW					
5.5 - 7.5	NON DE	NA-2750-CO EFLECTIVE SP14T SW	257 //TCH				
5.5 7.5	INOIN-NE	OA-2750-CQ	260	1-1			
	NON-RE	EFLECTIVE SP15T SW					
5.5 7.5		PA 2750-CO	263	. 🗱			
N	ON-REF	ELECTIVE SP16T SWI	TCHES				
0.5 6	7 X	PA1606	249	Amplitude and Dhase Metahad			
1 —————————————————————————————————————		PA1618	268	Amplitude and Phase Matched			
_ 🌄>	REFLE	CTIVE SP16T SWITC	HES				
2	18	1744	266	Broadband			
				机块机			
4			111				

Selection Guide (Cont.)

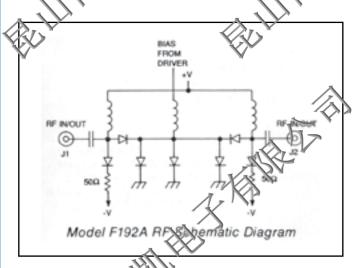
	SWITCHES WITHOUT INTEGRATED DRIVERS												
	FREQUENCY RANGE (GHz)								MODELOR	7	004445450		
	0.1	0.2	0.5	1 2	3	8 12.4	18	40	SERIES	PAGE	COMMENTS		
REFLECTIVE SO T SWITCHES													
</td <td></td> <td></td> <td>TIN)</td> <td><u></u></td> <td></td> <td></td> <td>— 18</td> <td>III</td> <td>91</td> <td>100</td> <td>Ministure broadband</td>			TIN)	<u></u>			— 18	III	91	100	Ministure broadband		
		0.2		1	4		<		9214	180	Miniature broadband		
	1	11	,				18/-1	40	90	338	Millimeter Wave		
	2	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				$\langle \rangle$	REFL	ECTIVE	SP2T SWIT	CHES			
1	\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{			1		XX	— 18		91		Miniature broadcand		
									91AH	193	Miniature broadband, high-speed		
		0.2			4			/	92		Miniature Proadband		
	0.1							20	2677	198	Wide Sand		
						NO	N-RE	FIECT	IVE SP2T SW	ITCHES	V		
				1				4	91T, 91W	(4)	Miniature broadband		
				'		X	Ka		91AHT	193	Miniature broadband, high-speed		
		0.2			4	1/1/	a		927		Miniature broadband		
					X		REFL	ECTIVE	SP3T SW/10	CHES			
		1 18							91		Miniature broadband		
									91AH	200	Miniature broadband, high-speed		
0.2		\prec	4					92	Miniature broadband				
		4				NO	N-RE	FLECT	IVE SP3T SW	ITCHES			
	4	1							91T, 91W	200	Miniature broadband		
									91AHT		Miniature broadband, high-speed		
		0.2			4				92T		Miniature broadband		
						I	REFL	ECTIVE	E SPAT SWITCHES				
				4			10 -	11	91		Miniature broadband		
				1			— 18	X "	91AH	204	Miniature broadband, high-speed		
		0.2			4				92		Miniature broadband		
						NO	NRE	FLECT	IVE SP4T SW	TICHES >			
				1			18		91T, 91W		Miniature broadband		
				44					91AH7	204	Miniature broadband, high-speed		
		0.2							92T V		Miniature broadband		
					41,			ECTIVE	SP5T SWITO	CHES	N N		
									91	217	Miniature broadband		
		0.2			4				92	UTAL: TA			
		4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,		NO		FLECT	IVE SP5T SW	TICHES			
				1			18		91T, 91W	217	Miniature broadband		
		0.2			4				92T				

Switch Selection Guide (Cont.)

SWITCHES WITHOUT INTEGRATED DIVINERS (cont.)

4 A A)	
FREQUENCY PANGE (GHz) 0.1 0.2 0.5 1 2 4 8 12.4 18 40	MCOLL OR SERIES	PAGE	COMMENTS
	ESP6T SWITC	CHES	
0.2 4	91 92	221	Miniature broadband
NON-REFLECT	IVE SP6T SW	ITCHES	
1 4	91T, 91W 92T	221	Miniature broadband
ŘEFLECTIV	E SP7T SWITC	CHES	1.18
1 18	91 92	232	Miniature orondband
NON-REFLECT	P7T SW	ITCHES	A \$\$\$
0.24	91T, 91W 92T	232	iniature broadband
展別開開			

#


展別展開

展別開展

根加州和

Wodel F192A Mon-Reflective Ultra-Broadband High-Speed SPST Switch

The Model F192A is a high-speed non-reflective PIN diode SPST switch with integrated driver. Operating over the instantaneous frequency range from 0.2 to 18 GHz, it provides a miximum isolation of 80 dB from 0.5 to 18 GHz, and 70 oB below 0.5 GHz. The RF design consists of an accompenent of shunt and series diodes in a microstrip integrated circuit transmission line as shown in the schematic diagram below.

The currents required to switch the unit ON or OFF and simultaneously maintain a bilateral 50-ohm impedance match in both states are provided by the integrated driver, which is controlled by an external logic signal.

 High speed 0.2 to 18 GHz frequency range 80 dB isolation Non-reflective Low VSWR and insertion loss · Small size, light weight -12V SER, NO

Model F192A SPECIFICATIONS

PRORMANCE CHARACTERS

XX	FREQUENCY (GHz)						
CHARACTERISMO	0.2	0.5	2.0	8.0	12.4		
ONAMA TEMPOR	to	16 To	to	to	to 🧷		
	0.5	20	8.0	12.4	18.0		
Min Isolation (dB)	70	80	80	80	80 7		
Max Insertion Loss (dB)	2.0	2.0	2.5	3.0	3.5		
VSWD (ON and OFF)	1.5	1.5	1.75	2.0	2.0		

Switching Speed

Rise Time 10 nsec. max. Fall Time......10 nsec. max. ON Time......30 nsec. max. OFF Time 15 nsec. max

Power Handling Capability

Without Performance 500 mW cw or peak Degradation..... 1W everage, 10W peak Survival Power (µsec max. pulse width)

Power Supply Requiremen

+5V ±5%, 90 mA -12V ±5%, 75 m

Control Characteristics

Control Input Impedance.

.....TTL, advanced Schottky, one-unit load. (A unit load is 0.6 mA sink current and

20 µA source current.) Control LogicLogic "0" (-0.3 to +0.8V) for switch ON and logic "1"

wit. (+2.0 to +5.0V) for switch

176

Model F192A SPECIFICATIONS

OPTION (G09) ENVIRONMENTAL RATINGS Operating Temperature Range54°C to +110°C

Non-Operating Temperature

Range -65°C to +125°C

Humidity MIL-STD-202F, Method 1038 Cond. B (96 hrs. at 95%)

Shock...... MIL-STD-202F, Metroo 213B, Cond. B (75G, 6 msec)

is less)

Altitude MIL-STD-202F, Method 1050

Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-202F, Method 107D,

Cond. A, 5 cycles

AVAILABLE OPTIONS

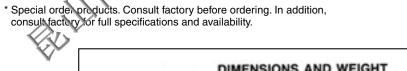
Option No.	Description
3	SMA female control connector
7	Two SMA male RF connectors
9	Inverse control logic; logic "1" for switch ON and logic "0" for switch OFF
10	One SMA male (J1) and one SMA female (J2) RF connector
33	EMI filter solder-type control terminal
48	+5V, -15V operation
G09	Guaranteed to meet Environmental
	Ratings
G12	RoHS Comoliant

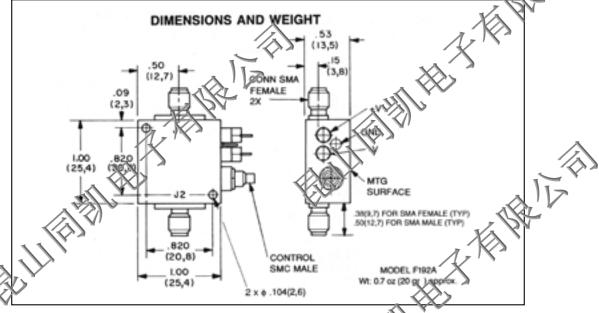
Video Filters. RF operating band restricted to 6-18 GHz.

Leakage 50 mV P-P into a 300 MHz

bandwidth.

Option 5004 includes Options 9 and 33. If Option 5004 is desired and Option 9 and/or 33 are not, consult factory.


893* Video Filters. RF band 0.5-2 GHz. Leakage 100 mV P-P into 100 MHz


bandwidth.

5037* Video Filters. RF band 2-18 GHz.

Leakage 100 mV. P-P into 100 MHz

bandwidth.

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

Model F9016 0.1 to 40 GHz SRST Switch

Model F9016

General Microwave introduces the Model F9016 ultrabroadband, Reflective SPST Switch operating over a frequency range of 100 MHz to 40 GHz.

Applications include ultra-wide band Test, Receiving and EW Systems

限加州和

0.1 to 40 GHz FREQUENCY RANGE

LOW VSWR and INSERTION LOSS

Model F9016

ALLI FILLING TO SERVICE STATE OF THE PARTY O

展別展場

Model F9016 0.1 to 40 GHz SPST Switch

PERFORMANCE CHARACTERISTICS

_		<u> </u>	\times	FREQUEN	ICY (GHz)	
	MODELNO	CHARACTERISTIC	0.1-4	4-18	18-26.5	26.5-40
		Min. Isolation (de)	60	50	35	30
	₹9016	Max. Insertion Loss (dB)	2.3	2.9	3.5	5.0 \ \ +
		Max. VSWR (CN)	2.0	2.3	2.5	125

WITCHING CHARACTERISTICS

POWER HANDLING CAPABILITY

Without Performance

Degradation 200mW cw or peak

POWER SUPPLY REQUIREMENTS

. +5√ ±2%, 60 mA max. -15√ ±5%, 50 mA max.

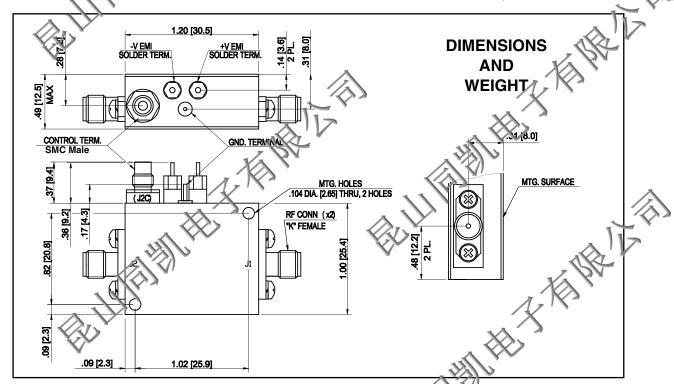
CONTROL CHARACTERISTICS

Control Input

is 0.6 mA sink current and 20 µA source current.)

Control Logic Logic "0" (-0.3 to +0.8V) for switch ON and Logic

"1" (+2.0 to +5.0V) for switch OFF.


AVAILABLE OPTIONS

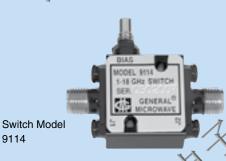
Option No. Description

Guaranteed to meet Environmental

Ratings

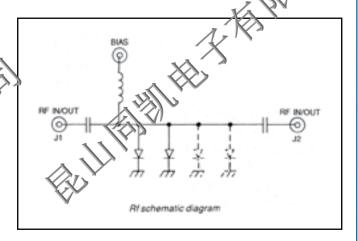
G12 RoHS Compliant

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008


Series 91 and 92 And SPST Switches

- Frequency range (Series 9)
 1 to 18 GHz
- Frequency range (Series 92): 0.2 to 4 GHz
- Low VSWR and insertion loss
- Up to 80 dB isolation
- Less than 10 nsec rise and fall time
 Miniature size, light weight

UNITS WITH INTEGRATED DRIVERS


DRIVERLESS UNITS

SERIES 97 AND 92

Series 91 and 92 switches provide high performance characteristics over a multi-octave range. Series 91 models cover the frequency range of 1 to 18 GHz, while Series 92 models cover the range from 0.2 to 4.0 GHz. These miniature switches measure only 0.75 x 0.69 x 0.38 inches.

Both series use an integrated circuit assembly of up to four PIN diodes mounted in a microstrip transmission line. The circuit configuration is shown below.

Application of a positive current to the bias terminal switches the unit OFF since the diodes are biased to a low resistance value. With zero or negative voltage at the bias terminal, the diodes are biased to high resistances and the unit is switched ON. Maximum rise and fall times are less than 10 nsec.

SERIES F91 AND F92

The Series F91 and F92 switches are the same as the corresponding Series 9, and 92 models except the units are equipped with integrated drivers, and the dimensions of the units are 0.75 x 0.75 x 0.38 inches. The proper surrent required to switch the unit ON or OFF is provided by the integral driver which requires +5 and -12 to -15 volt power supplies and is controlled by an external logic signal.

Series 91 and 92 SEST Switches Specifications

PERFORMANCE CHARACTERISTICS

X			FREQUENCY (GHz)					
MODEL NO	CHARACTERISTIC	0.2 to 0.5	0.5 to 1.0	1.0 to 2.0	2.0 to 4.0	4.0 to 8.0	8.0 to 12.4	12.4 to 18.3
9112*, F9112A*	Min. Isolation (db) Max. Insertion Loss (dB) Max. VSWR (QN)	- - -	- - -	36 0.8 1.3	40 0.8 1.3	45 0.9 1.6	45 1.1 1.75	45 1.8 1.75
9114, F9114A	Min. Isoladon (dB) Max. Insertion Loss (dB) Max. VSWR (ON)	- - -	- - -	60 0.9 1.4	74 0.9 1.4	30 1 0 1.75	80 1.6 1.75	80 2.5 2.0
9214*, F9214A	Min. Isolation (dB) Max. Insertion Loss (dB) Max. VSWR (ON)	40 1.0 1.5	45 1.0 1.5	50 1.0	7.0 1.5	<u> </u>	-	- - -

^{*}Special-order product. Consult factory before ordering

9112, F9112A 9114, F9114A

Switching Speed⁽²⁾

9214, F9214A

Switching Speed(2)

 Rise Time
 10 nsec max

 Fall Time
 10 nsec max

 ON Time⁽⁴⁾
 40 nsec max

 OFF Time⁽⁴⁾
 40 nsec max

 Repetition Rate⁽⁴⁾
 10 MHz max

Power Supply Requirements

Driverless Units

For rated isolation: +35 mA For rated insertion loss: -10V

Units With Integrated Drivers

+5V ±5%, 65 mA -12 to -15V, 20 mA

Power Handling Capability

Control Characteristics

Control Input

Control Logic Logic /0" (-3.0 to +0.8V) for switch QN and logic "1" (+2.0 to +5.0V) for switch OFF.

- (1) Models prefixed with "F" are equipped with integrated TTL-compatible drivers; models without the "F" prefix are current-controlled units and are furnished without drivers.
- (2) For driverless units, shaped current pulses must be provided by the user.
- (3) 2W cw or peak with -20V back bias.
- (4) ON and OFF time and repetition rate specifications are only applicable to Sques F91 and F92 units.

Series 91 and 92 SPST Switches Specifications

制制大桶 OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature Range:

Series 91 and 92.....-54°C to +125°C Series F91 and F92-54°C to +110°C

Non-Operating Temperature

Range

.....MIL-STD-202F, Method Humidity ...

103B, Cond. B (96 hrs. at

95%)

MIL-STD 202F, Method

213B, Cond b (75G, 6

msec)

Vibration MIL-STD-202F, Method

204D, Cond. B (.06"

double amplitude or 15G:

whichever is less)

AltitudeMIL-STD-202F, Method

105C, Cond. B 55,000 ft.)

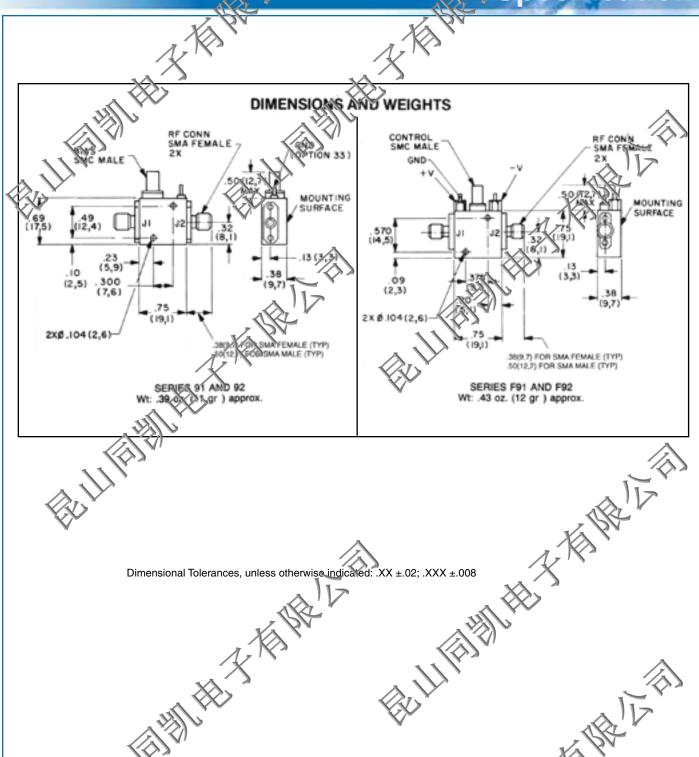
Temp. CyclingMIL-STD-202F, Method

107D, Cond A, 5 cycles

IONS **AVAILABLE**

Ontion/No

Option No.	Description
3	SMA female bias/control connector
7	Two SMA male RF connectors
9	Inverse control logic; logic "0" for
	switch OFF, logic "1" for switch ON
	(Not applicable to Series 91/92)


- One SMA male (J1) and one SMA 10 female (J2) RF connector
- 33 EMI filter solder-type bias/control terminal
- 41* Internal video filter, port 1 only
- Internal video filter port J2 only 42*
- 43* Internal video filter both ports
- Frequency range 0.5 to 18 GHz. See 55
- SMB male bias/control connector 64A
- G09 Guaranteed to meet Environmental
- **G12** NoHS Compliant

限加州市

^{*} Not applicable to Models 9214 and F9214. See Video Filter Options on page 141.

Series 91 and 92 SEST Switches Specifications

.nerwise indica Dimensional Tolerances, unless otherwise indica ed: .XX \pm .02; .XXX \pm .008

最加加斯斯

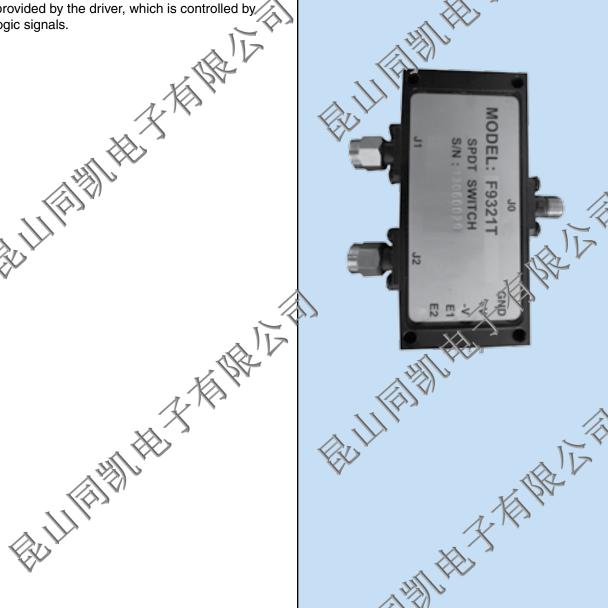
Model F9321T SPD Phase & Amplitude Matched Switch

MODEL F9321T

Model F9321T is a low cost high-performance terminated SPDT switch that operates over the full instantaneous bandwidth of 2 to 21 GHz with ON and OFF times of 100 nsec. Design features include an integrated circuit assembly of PIN diodes mounted in microstrip transmission line.

The Model F3321T has all of the output ports on one side while maintaining Amplitude and Phase matching between all output ports.

The Model F9321T is equipped with an integrated driver that is powered by +5 and -12 volt supplies. OFF are provided by the driver, which is controlled by The proper currents required to switch the ports ON or a by external logic signals.


Frequency range: 2 to 21 GHz

Isolation: 45 dB

In-line outputs

Phase and amplitude matched

Non-reflective

Model F3321T SPDT Specifications

PERFORMANCE CHARACTERISTICS

CHARACTERISTIC	SPECIFICATION
FREQUENCY RANGE (GHz)	2-21
MIN. ISOLATION (dB)	45
MAX. INSERTION LOSS (dB)	4.0
MAX. VSWR (CN/OFF)	2.5

Phase & Amplitude Matching

Amplitude Matching1 dB Typical Phase Matching12 Deg. Typical

Switching Time

Power Handling Capability Without Performance

Degradation OFF port 100 mW cw or peak

ON port 1W cw or peak

Survival Power OFF port 1W average, 10W

peak (1 µsec max. pulse width)

ON port 1W average, 75W

peak (1 µsec max. pulse width)

Control Characteristics

Control Input

Impedance.....TTL, advanced Schottky, one

vnit load. (A unit load is 0.6 mA sink current and 20 μΑ

source current.)

Control LogicLogic "0" (-0.3 to +0.8V) for

Port "ON"

Logic "1" (+2.0 to +5.0V) for

Port "OFF".

Power Supply Requirements

+5 1/±5%, 80 mA max -12 V to -15 V 50 mA max

PNON (G09) ENVIRONMENTAL RATINGS

Operating Temperature Range -54°C to +110°C Non-Operating Temperature Range -65°C to +125°C

Humidity MIL-STD-202F, Method 103B,

Cond. B (96 hrs. at 95%)

Cond. B (75G, 6 msec)

Vibration Mll. STD-202F, Method 204D,

Cond. b (.06" double amplitude or

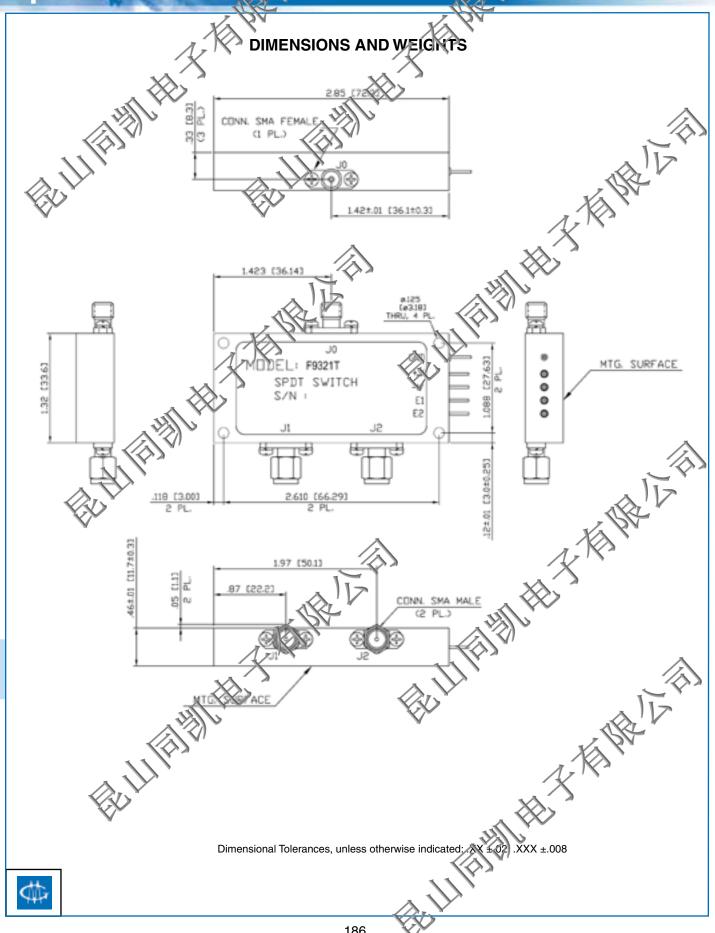
15G, whichever is less)

Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-202F, Method 1070

Cond. A, 5 cycles

AVAILABLE OPTIONS


Option No. Description

G09 Guaranteed to meet Environmental Ratings

G12 RoHS Compliant

Model F9321T SPD **Specifications**

Model F9025 0.1 to 40 GHz SPDT Switch

Model F9025

General Microwave introduces the Model F9025 ultrabroadband, Reflective SPDT Switch operating over a frequency range of 100 MHz to 40 GHz.

Applications include ultra-wide band Test, Re and EW Systems.

0.1 to 40 GHz FREQUENCY RANGE

LOW VSWR and INSERTION LOSS

PERFORMANCE

	FREQUENCY (GHz)				
MODEL NO.	CHARACTERISTIC	0.1-4	4-18	18-26.5	26.5-40
9025	Min. Isolation (dB) Max. Insertion Loss (dB) Max. VSWR (ON)	70 2.6 2.0	60 3.2 2.3	55 3.8 2.5	5.3 2.5

SWITCHING CHARACTERISTICS

POWER HANDLING CAPABILIT

Without Performance

Degradation 200mW cw or peak

POWER SUPPLY REQUIREMENTS

+6V ±2%, 75 mA max 15V ±5%, 50 mA max

CONTROL CHARACTERISTICS

Control Input

Impedance ..

TL, advanced Schottky, one unit load. (A unit load is 0.6 mA sink current and 20 µA source current.)

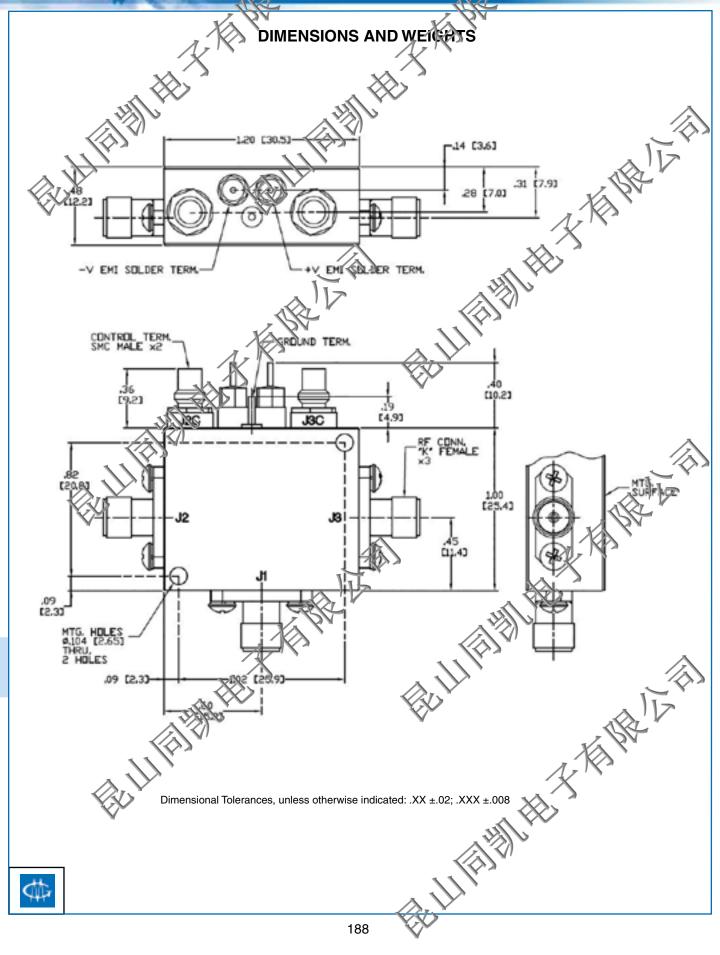
Control Logic Logic "0" (-0.3 to +0.8V) for switch ON and Logic

"1" (+2.0 to +5.0V) for

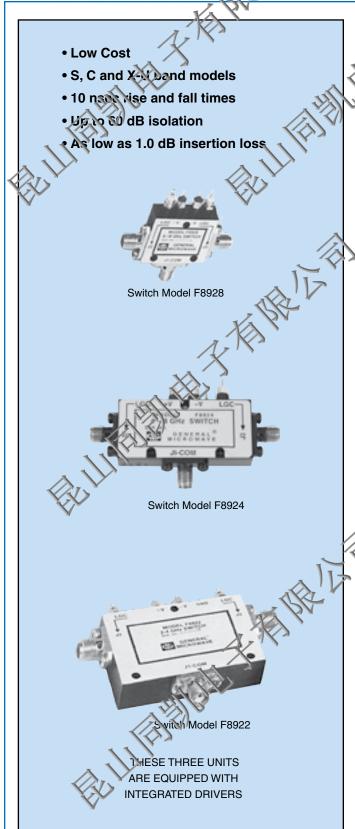
switch OFF.

AVAILABLE OPTIONS

Option No. Description


G09 Guarante of to meet Environmental

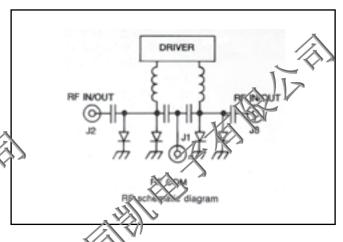
Ratings


G12 Robs Compliant

Model F9025 0.1 to 40 GHz SPDT Switch

High-Speed Octave-Band SP2T Switches

SEMES F892


eries F892 high speed switches with integrated drivers are low-cost units that have been engineered to meet the need of microwave system designers for fast switching devices in small packages.

2 To 18 GHz Frequency Range

Frequency coverage from 2 to 18 GHz is provided by the three models in the Series: Model 18922 (2-4 GHz), Model F8924 (4-8 GHz) and Model F8928 (8-18 GHz). Each model is capable of extended bandwidth operation, typically 3.1, with only moderate degradation in performance at the band edges, as shown in the specifications on page 102.

Fast Switching hunt Design

All models are optimally designed, with respect to their size, for low VSWR and insertion loss. As shown in the schematic below, a pure shunt design is used for the most practical realization of fast switching action. Although the use of a pure shunt mode imposes certain bandwidth limitations, frequency coverage in excess of octave bands has been maintained.

The proper currents required to switch ports ON or OFF are provided by the integrated drivers which are controlled by external logic signals. 川間期間

High-Speed Octave-Band SP2T Switches

PERFORMANCE CHARACTERISTICS

			/		
X	MOOEI. NO.	FREQUENCY RANGE (GHz)	INSERTION LOSS, MAX	ISOLATION MIN. (dB)	VSWR MAX. (ON)
A	(7) E0000*	2-4	√.0	60	1.5
"	F8922*	1.5-4.5	2.0	55	2.0
	E0004*	4-6	1.4	50	1.5
	F8924*	3-0	2.3	45	2.2
	E0000	8-18	2.3	45 ⁽¹⁾	22
	F8928	6-18	2.5	45 ⁽¹⁾	2.5

^{*}Special-order product. Consult factory before ordering.

Switching Character's

Rise Time Fall Time... ... 10 nsec max. ON Time...35 nsec max. OFF Time30 nsec max. Repotition rate......10 MHz max.

Fower Handling Capability

Without Performance

Degradation.....2W cw or peak⁽²⁾

Survival Power2W average, 75W peak (1 µsec max. pulse width)

Control Characteristics

Control Input

Control logicLogic "0" (-0.3 to +0.8V) for port ON and logic "1" (+2.0 lo +5.0V) for port OFF.

Power Supply Requirements

(For one port ON). 1/2 +5V ±5%, 65 mA 312 to −15V⁽²⁾, 20 mA

(1) Isolation 40 dB above 16 GHz

(1) Isolation 40 dB (1804) 13 GHz.

(2) With -15V power supply. Reduces to 1.5W with -12V power supply. Units may be operated at higher input power sevens some increase in s.vitching time when -30V power supply is used. (consult factory for this optio)

SP2T Switches Specifications

·川原期 ·

展別問題

OPTION (ENVIRONMENTAL RATINGS

Operating Temperature

Range-54°C to +110°C

Non-Operating Temperature

Range.....-65°C to \125°C

YumidityMIL-STD-202F, Method

1038, Cond. B (96 hrs. at

95%

Shock......MIL-STD-202F, Method

213B, Cond. B (75G, 6 msec)

VibrationMIL-STD-202F, Method

204D, Cond. B (.06" double

amplitude or 156, whichever

is less)

AltitudeMIL-STD-202F, Method

1050, Cond. B (50,000 ft.)

107D, Cond. A, 5 cycles

AVAILABLE OR NONS

Option No. Description

- 3 SMA female control connectors
- 7 SMA male RF connectors
- J1 SMA male; J2 and J3 SMA female
- J1 SMA female; J2 and J3 SMA male
- 9 Inverse control logic; logic "0" for port
- OFF and logic "1" for port ON

orrandiogic i for port ON

27 Single-port toggle control; logic "0"

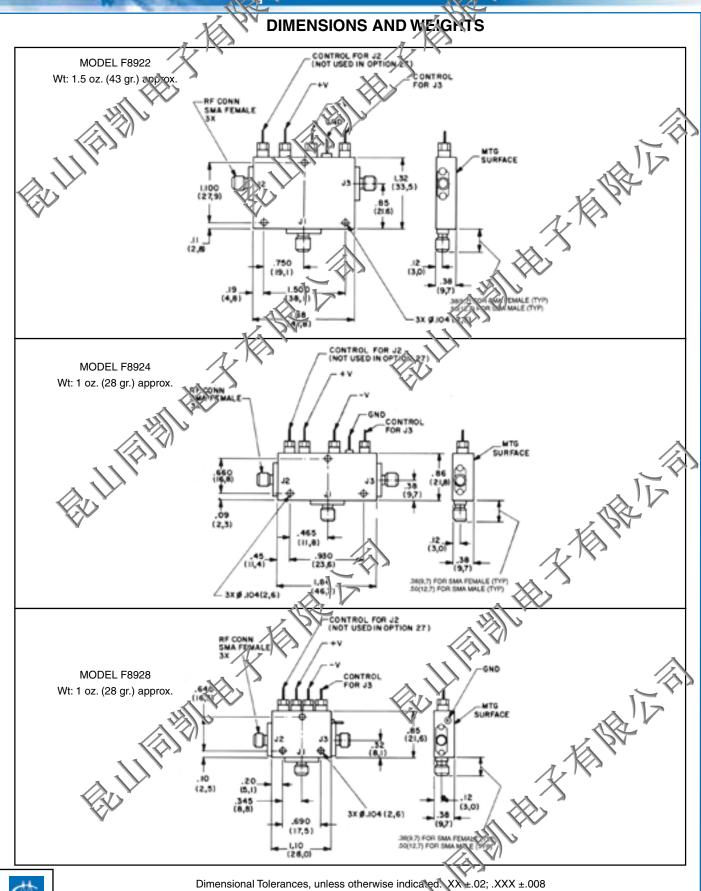
connects J1 to J2

62 ±15V operation

64 SMC male control connectors

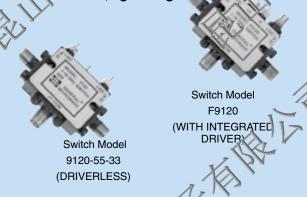
64A SMB male control connect

65 ±12V operation

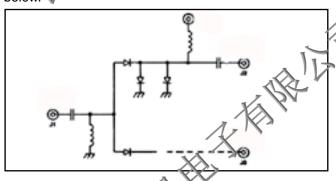

G09 Guaranteed to meet Environmental

Ratings

G12 RoHS Correspond



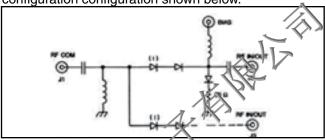
Series F892 SP2T Switches Specifications


Series 91 and 92 Miniature Broadband SP2T Switches

- Frequency range (Series 91): 1 to 18 GHz
- Frequency range (Series 92): 0.2 to 4 GHz
- · Rise and fall times as fast as 10 nsec
- Reflective and Non-reflective models
- Low VSWR and insertion loss
- · Miniature size, light weight

MODELS 9120-500 AND 9220-500

These switches provide high-performance characteristics over a multi-octave frequency range. Model 9120-500 covers the frequency range of 1 to 18 GHz; Model 920-500 covers the frequency range of 0.2 to 4 GHz. Both models use an integrated circuit assembly of a series-shunt configuration of PIN diodes mounted in a microstrip transmission line as shown below.


Series 91 and 92 schematic diagram

Port Control

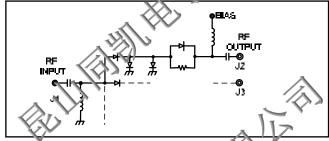
By applying positive current to a bias terminal, the associated port is NFF since the corresponding shunt diodes are bias a to a low resistance and the series diode to thigh resistance. With negative current at the bias terminal, the converse conditions are established and the port is ON. Since bias terminals are individually available for both ports, the user has the option of any combination of ports ON or OFF.

MODEL 9120T-500, 9120W-500 AND 9220T-500

These switches are non-reflective versions of the switches described above. They are constructed in the configuration configuration shown below.

(1) SERIES 91W UNITS ARE CONSTRUCTED WITH THREE SEVIES DIODES
Series 91T, 92 T and 91W schematic diagram

When positive current is applied, the port is OFF since the associated series diodes are back-biased to a high resistance. At the same time, the corresponding shunt diode is biased to a low resistance, and the impedance at the port is then effectively that of the 50 ohm resistor in series with the shunt diode. When applying negative current, the converse conditions are established and the port is ON.


Note that when all output ports are OFF, a high VSWR will be present at the common port.

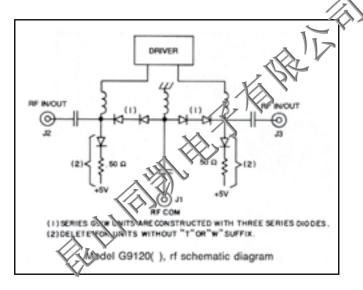
MODEL 9120AH-500

This switch has the same circuit topology as the 9120-500 except it is equipped with high-speed diodes to achieve rise and fall times of 10 nsec.

MODEL 9120AHT-500

This switch is similar to the 9120AH-500 except it includes a terminating network as shown below.

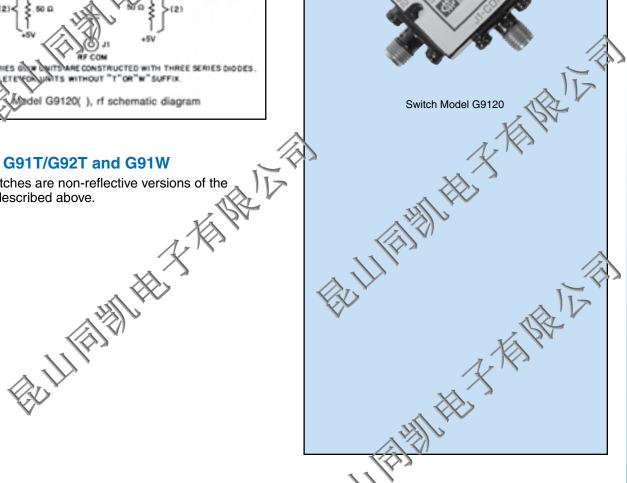
Model 9120AHT-500 schematic diagram


SERIES F91/F92

The Series F91/F92 units are the same as the Series 91/92 units except they are exuipped with integrated drivers that are powered by +5 and -12 to -15V supplies. The proper currents required to switch the ports ON or OFF are provided by the drivers, which are controlled by external control signals. Standard units are wired so that a port is ON with the application of a logic "0" control signal.

Series 91 and 92 Miniature Broadband SP2T Switches

SERIES G91 and G92


Operating from +5 and +15V power supplies only, the G-series switches provide high performance characteristics at relative), high speeds over multi-octave frequency ranges. The series includes low insertion loss and high isolation models in both reflective and on-reflective configurations. Series 39 units cover the frequency range of 1 to 18 GHz; Series G92 units cover the frequency range of 0.2 to 4 GHz. The design is based on an integrated circuit assembly of PIN glodes mounted in a microstrip transmission line as shown below. The currents required to switch the ports ON or OFF are provided by the integrated driver, which is controlled by external TTL logic signals.

SERIES G91T/G92T and G91W

These switches are non-reflective versions of the switches described above.

- Frequency range (Series G91): 1 to 18 GHz
- Frequency range (Series G92): 0.2 to 4 GHz
- Reflective and non-reflective models
- Low VSWR and insertion loss
- Up to 60 dB isolation
- Positive DC supplies only
- Miniature size, light weight

Series 91 and 92 SE2T Switches Specifications

				YA	R.			
	MODEL	REQUENCY (GHz)						
	NO. ⁽¹⁾	CHARACTERISTIC	0.2-1	-2	2-4	4-8	8-12.4	12.4-18
	9120-500*	Min. solation (dB)	- 💉	60	60	60	60	50
	F9120	Max insertion Loss (dB)	\\X	1.1	1.1	1.4	2.0	2.5
	<u>II</u>	Max. VSWR (ON)	JHL.	1.75	1.75	1.75	1.75	2.0
		Min. Isolation (dB)		60	60	60	60	50
	G9120*	Max. Insertion Loss (dB)	>> <u> </u>	1.8	1.8	1.8	2.2	2.5
ļ	0000 5004	Max. VSWR (ON)	<u>-</u>	1.5	1.5	1.7	1.7	30
	9220-500* 1-9220*	Min. Isolation (dB)	60	60	60	-	TEXT	# <u>-</u>
\checkmark	73.20	Max. Insertion Loss (dB) Max. VSWR (ON)	1.5 1.5	1.5 1.5	1.5 1.5	_	1/2- N	_
Ì	\	, ,					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_
	G9220*	Min. Isolation (dB) Max. Insertion Loss (dB)	60 1.8	60 1.8	60 1.8	<u>-//</u>	/ 🔪 —	_
	G9220	Max. VSWR (ON)	1.5	1.5	1.5	~	_	_
l	9120T-500*	Min. Isolation (dB)		50	50 🔥	50	45	40
	F9120T	Max. Insertion Loss (dB)	<u> </u>	1.2	1.2	1.5	1.5	2.2
	G9120T*	Max. VSWR (ON or OFF)	> -	1.5	55	1.7	1.7	2.0
İ	9220T-500*	Min. Isolation (dB)	60	60	60	_	_	_
	F9220T*	Max. Insertion Loss (db)	1.3	1.3 💉	\ \ i .3	-	-	_
	G9220T*	Max. VSWR (ON or OFF)	1.5	1.5	1.5	-	-	-
	9120W-500*	Min. Isolation (dB)	_	(60) Y	60	60	60	55
	F9120W	Max. Insertion Loss (dB)	-	1/8	1.8	1.8	2.2	2.5
	G9120W*	Max. VSWR (QN or OFF)	-	1.5	1.7	1.7	2.0	2.0
	9120AH-500*	Min (solation (dB)	-	60	60	60	60	50
	F9120AH	Max. Assertion Loss (dB)	_	1.1	1.1	1.4	2.0	2.5
	O100ALIT FOOT	Max.VSWR (ON)	_	1.75	1.75	1.75	1.75	2.0
	9120AHT-500* F9120AHT	Min. Isolation (dB)	_	60	60	60	60 0.5	50
	1 3 12 UAIII	Max. Insertion Loss (dB) Max. VSWR (ON)	_	1.3 1.75	1.3 1.75	1.7 1.9	2.5 2.0	
	Way S	Max. VSWR (OR)	_	1.75	1.75	2.0		2.3
Į	X-X	maxi (OII)		1.70	1.70	2.0	2/2/2	2.0

^{*}Special-order product. Consult factory before ordering.

PERFORMANCE CHARACTERISTICS

Power Handling Capability

Without Performance Degradation

Units without "T" or "W" suffix: 1W cw or pear

Units with "T" or "W" suffix

Input to any "OFF" port: 100 mW cw peak

Input to any "ON" port: 1W cw or peak

Input to common port: 1W cw or peak

Survival Power

Units without "T" or "W" suffix: 1W average, 75W peak (1 µsec pax. pulse width)

Units with "T" or "W" suffix
Input to any "OPF" port: 1W average
10W peak (1 usec max. pulse width)
Input to any "ON" port: 1W average,

75W peak (1 µsec max. pulse width)

npul to common port: 1W average 75W peak (1 µsec max. pulse width

(1) Models prefixed with "F" or "G" are equipped with integrated TTL-compatible drivers; models without the "F" or "G" prefix are current-controlled units and are furnished without drivers; models suffixed with "T" or "W" are non-reflective except a high VSWR will be present at the common port if all other ports are OFF; models suffixed with "H" are high-speed units.

Series 91 and 92 SP2T Switches Specifications

Switching Characteristics SERIES 91/F91/G91

Units without "H" suffix ON time...... 250 nsec max. 250 nsec max. OFF time

Units with "H" suffix

Rise time 10 nsec max. Fall time..... 10 nsec max. Repetition rate...... 20 MF/Z Max.

SERIES 92/F92/G92

ON time...... 500 nsec max. OFF time 500 nsec max.

Power Supply Requirements

SERIES 91/92/F91/F92

Driverless Units

Bias current required at each port for rated is alion and insertion loss.

PORT OFF

Units without "H" suffix +50 mA Units with "H" suffix ¥30 mA

PORT ON

Units without "H" suffix -50 mA Units with "H" suffix -35 mA

Units With Integrated Drivers

(For one port ON)

I	one port ON)	+5V ±5%	–12 to –15V		
	Units Without "H" Suffix	65 mA	65 mA		
	Units With "H" Suffix	60 mA	50 mA	. 4	
	Units With "HT" Suffix	80 mA	50 mA	1	
RIES G91/G92 r one Port ON) 5V ±5%, 100 mA 15V ±5%, 30 mA					

SERIES G91/G92

(For one Port ON)

+5V ±5%, 100 mA +15V ±5%, 30 mA

(1) For driverless units, shaped current pulses must be provided by user.

Control Characteristics SERIES 91/92/F91/F92 Units With Integrated Drivers Control Input Impedance

Units without "H" suffix TTL, low power Schottky,

one unit load. (A unit load) is 0.8 mA sink current and 40 μA source current.

Units with "H" suffixTTL, advanced Schottky,

one unit load. A unit load is 0.6 m/ so k current and

20 µA source current.)

Control LogicLogic "0" (-0.3 to +0.8V) for port ON and logic "1" (\$2.0 to +5.0 V) for port

OFF.

SERIES G91/G92

Control Input Impedance .. Schottky TTL, one unit

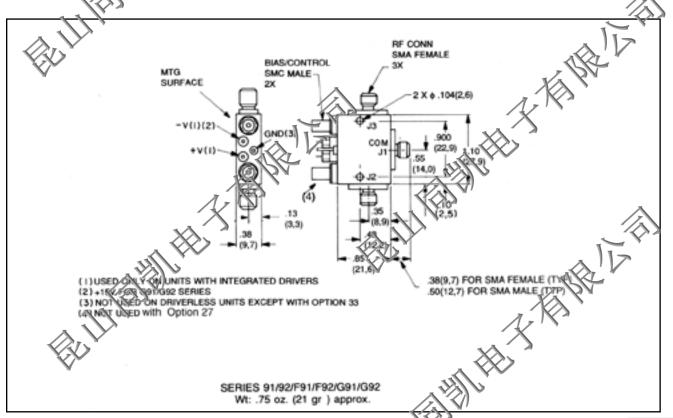
load. (A unit load is 2.0 mA sink current and 50 uA source current.)

Control LogicLogic "0" (-0.3 to +0.8V)

for port ON and logic "1" (+2.0 to +5.0 V) for port

OFF.

川原期 提大



Series 91 and 92 SERT Switches Specifications

		VA Y
ENVIRONMENTAL RATIONS	AVAILABI	PTIONS
Temperature Range	Option No.	Description
Units With Integrated Drivers Operating54°C to +110°C	1/2/2	SMA female bias/control connectors
Non-Operating65°C to +125°C	$\langle \langle \rangle \rangle$	J1, J2 and J3 SMA male
Driverless Chile	7A	J1 SMA male; J2 and J3 SMA female
Operating /54°C to +125°C	⁽⁾ 7B	J1 SMA female; J2 and J3 SMA male
Noi-Operating65°C to +125°C	9	Inverse control logic; logic "0" for po t OFF
Hun idityMIL-STD-202F, Method 103B, Cond B (96 hrs. at		and logic "1" for port ON (Not applicable to
95%)	07	Series 91/92)
ShockMIL-STD-202F, Method	27	Single-port toggle control logic '0" connects J1 to J2 (Not applicable to the
213B, Cond. B (75G, 6 mse	ec)	Driverless Units, Series 91/92)
VibrationMIL-STD-202F, Method	33	EMI filter solder-type bids/control terminals
204D, Cond. B (.06" double amplitude or 15G, whicheve		Internal video i\(\mathbb{e} \) common port only
is less)	42*	Internal video filter, output ports only
AltitudeMIL-STD-202F Method	43*	Internal vioso filter, all ports
105C, Cond. B (50,000 ft.)	55	Frequency range 0.5 to 18 GHz. See page
Temp. CyclingMIL-STD-202F Method		139.
107D, Cond. A, 5 cycles	64A	SMB male bias/control connectors
	G09	Guaranteed to meet Environmental Ratings
×> -	G12	RoHS Compliant
A VV		

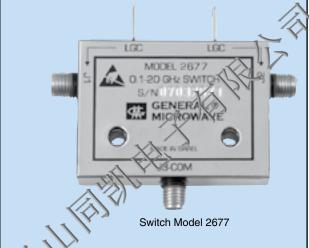
*Not applicable to Series 92//F92/G92. See Video Filter Options on page 167.

DIMENSIONS AND WEIGHT

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

Model 2677 Wide Frequency Band SP2T Switch

MODEL 2677


Model 2677 is a wide frequency range, Low Cost, high-performance SPD Switch. It operates over the full instantaneous bandwidth of 0.1 to 20 GHz.

The proper currents required to switch the ports ON or OFF are provided by the user.

Frequency range: 0.1 to 20 GHz

Isolation: up to 60 dB

Small Size

FORMANCE CHARACTERISTICS

CHARACTERISTIC	FREQUENCY (GHz)					
UNARACTERISTIC	0.1-4	4-12	12-18	18-20		
M.N. ISOLATION (dB)	60	60	45	45		
MAX. INSERTION LOSS (dB)	2	2	3	3.8		
MAX. VSWR (ON)	1.8	2.2	3.0			
me*						

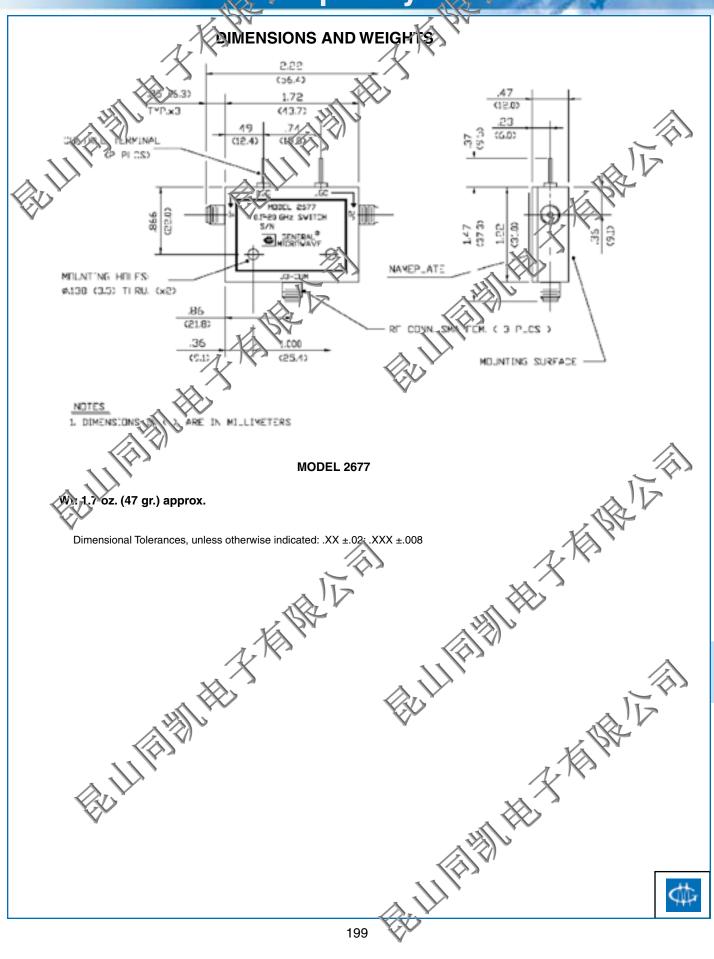
Switching Time*500 nsec max.

Power Handling Capability

Without Performance

Degradation.....1 W cw_or_peak

Survival Power1 W average 75 W peak,


Power Supply Requirements

Port ON+7.0 V 10.5 V, 50 mA max Port OFF... № ±0.5 V, 50 mA max

^{*}Shaped current pulses must be provided by user.

Wide Frequency Band SP2T Switch

Series 91 and 92 Miniature Broadband SP3T Switches

MODELS 9130-500 AND 9200-500

These switches provide high-performance characteristics over a multi-octave frequency range. The Model 9130-500 covers the 1 to 18 GHz frequency range walle the Model 9230-500 covers the 0.2 to 4 GHz range. This description and operation are the same as that for the Models 9120-500 and 9220-500 SP2T switches.

MODELS 9130T-500, 9130W-500 AND 92307-500

These switches are non-reflective versions of the switches described above.

MODELS 9130AH-500 AND 9130AHT-500

These switches are the same as the 9120AH-500 and 9120AHT-500 except for the number of ports.

SERIES F91 AND F92

The Series F91 and F92 switches are the same as the corresponding Series 91 and 92 models, except the units are equipped with integrated divers.

SERIES G91 AND G92

These switches are the same as the Series G91 and G92 SP2T switches except for the number of ports.

展別開開開

- Frequency range (Series 91): 1 to 18 GHz
- Frequency range (Series 92): 0.2 to 4 GHz
- Rise and fall times as fast as 10 nsec
- Reflective and Non-reflective models
- Low VSWR and insertion loss
- Isolation: up to 60 dB
- · Miniature size, light weight

Series 91 and 92 SE3T Switches Specifications

		**	/ 1/2					
	MODEL	XX	XX	7	FREQUEN	ICY (GHz)	
	NO. ⁽¹⁾	CHARACTERISTIC	0:2-1	1-2	2-4	4-8	8-12.4	12.4-18
	9130-500*	Min. Isolation (dB)	\ \ -	60	60	60	60	50
	F9130	Max. Insertion Loss (dB)	′ –	1.5	1.5	1.5	2.0	2.5
	-11/4-	Max. VSWR (ON)	_	1.75	1.75	1.75	1.75	2.0
	G9130*	Min. Isolation (dB)	_	60	60	60	607	50
<	21, 4	Max. Insertion Loss (dB)	_	1.8	1.8	2.0	169	2.8
1	V000 F004	Max. VSWR (Oil)	_	1.5	1.5	1.7	1.1	2.0
	9230-500* F9230*	Min. Isolation (dB)	60	60	60	7/2/	X 2—	_
	F923U	Max. Insertion Loss (dB) Max. VSWR (ON)	1.5 1.5	1.5 1.5	1.5 1.5	. 7	_	_
	G9230*	()	60	_		- -	_	_
	G9230	Min. Isolation (dB) Max. Insertion Loss (dB)	1.8	60 1.8	60	-	_	_
		Max. VSWR (ON)	1.5	1.5		_	_	_
	9130T-500*	Min. Isolation (dB)		50 <	50	45	40	40
	F9130T*	Max. Insertion Loss (CE)	_	1.4	1.5	1.6	1.8	2.5
	G9130T*	Max. VSWR (ON or OFF)	_	1/2/	1.5	1.7	1.7	2.0
	9230T-500*	Min. Isolation (dB)	60 🏑	60	50	_	_	_
	F9230T*	Max. Insertion Loss (dB)	1.2	1.2	1.4	_	_	_
	G9230T*	Max. VSIVR (ON or OFF)	1.5	1.5	1.5	-	I	-
	9130W-500*	Min. Isolation (dB)	_	60	60	60	60	55
	F9130W	Max. Insertion Loss (dB)	_	1.8	1.8	2.0	2.5	2.8
	G9130W*	Max. VSWR (ON or OFF)		1.5	1.7	1.7	2.0	2.0
	9130AH-500*	Min. Isolation (dB)	_	60	60	60	60	56
	F9130AH	Max. Insertion Loss (dB)	_	1.2	1.2	1.5	2.0	2.5
	0400/147 500	Max. VSWR (ON)	_	1.75	1.75	1.75	1.75	2.0
	91304/17-500* F91304/HT	Min. Isolation (dB)	-	60	60	60	1585T	50
	La 130#UI	Max. Insertion Loss (dB)	_	1.6	1.6	1.8	23V	3.3
		Max. VSWR (ON)	<u> </u>	1.75	1.75	1.9	2.0	2.0
		Max. VSWR (OFF)		1.75	1.75	2.0 - 1	2.2	2.3

^{*}Special-order product. Consult factory before ordering.

PERFORMANCE CHARACTERIS

Power Handling Capability

Without Performance Degradation

Units without "T" or "W" suffix: 1W ew or peak

Units with "T" or "W" suffix

Input to any "OFF" port: 100 neW cw or peak
Input to any "ON" port: 1W cw or peak
Input to common port: 1W cw or peak

Survival Power

Units without "I" or "W" suffix: 1W average, 75W peak (1 usec max. pulse width)

Units with "T' or "W" suffix
Input to any "OFF" port: 1W average,

10W peak (1 µsec max. pulse width)

Input to any "ON" port: 1W average

75W peak (1 µsec max. pulse with

Input to common port: 1W average.

75W peak (1 µsec max. pulse width)

⁽¹⁾ Models prefixed with "F" or "G" are equipped with integrated TTL-compatible drivers; models without the F" or "G" prefix are current-controlled units and are furnished without drivers; models suffixed with "T" or "W" are non-reflective except a high VSWR will be present at the common port if all other ports are OFF; models suffixed with "H" are high-speed units.

Series 91 and 92 SP3T Switches **Specifications**

Switching Characteristics **SERIES 91/F91/G91**

Units without "H" suffix ON time..... 250 nsec max. OFF time250 nsec max. Units with "H" suffix Rise time...... 10 nsec max. Fall time..... 10 nsec max. ON tin e 25 nsec max. Repetition rate................................ 20 MF/z max.

SERIES 92/F92/G92

ON time...... 500 nsec max. OFF time 500 nsec max.

Power Supply Requirements SERIES 92/F92/G92

Driverless Units

Bias current required at each port for rated is lation and insertion loss.

PORT OFF

Units without "H" suffix +50 mA Units with "H" suffix ₩30 mA

PORT ON

Units without "H" soffix -50 mA Units with "A" suffix -35 mA

Units With Integrated Drivers

(For one port CN)

r	one port ON)	+5V ±5%	–12 to –15V			
	Units Without "H" Suffix	130 mA	60 mA			
	Units With "H" Suffix	75 mA	55 mA	_/		
	Units With "HT" Suffix	105 mA	55 mA	V		
RIES G91/G92 r one port ON) 5V ±5%, 100 mA 15V ±5%, 40 mA						

SERIES G91/G92 (For one port ON)

+5V ±5%, 100 mA +15V ±5%, 40 mA

(1) For driverless units, shaped current pulses must be provided by user.

Control Characteristics SERIES 91/92/F91/F92 Whits With Integrated Drivers Control Input Impedance

Units without "H" suffix TTL, low power Schottky, one unit load. (A unit load) is 0.8 mA sink current and 40 μA source current

Units with "H" suffixTTL, advanced Schottky, one unit load. A unit load is 0.6 m/ sink current and

20 µA source current.)

Logic "0" (-0.3 to +0.8V) Control Logic for port ON and logic "1" (+2.0 to +5.0 V) for port

OFF.

SERIES G91/G92

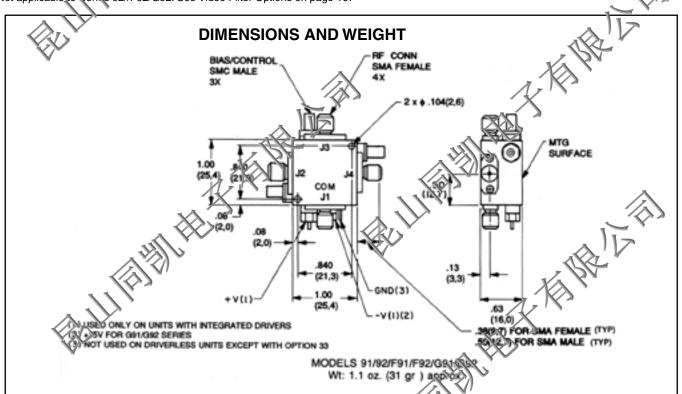
Control Input Impedance .. Schottky TTL, one unit load. (A unit load is 2.0

mA sink current and 50 μA source current.)

Control LogicLogic "0" (-0.3 to +0.8V) for port ON and logic "1" (+2.0 to +5.0 V) for port

OFF. 展別開開開

JUNETAL TO THE STATE OF THE ST



Series 91 and 92 SE3T Switches Specifications

OPTION (G09) ENVIRONMENTAL RATINGS

Temperature Range	>	*/ >	DI E ORTIONO
Units With Integrated	Drivers	VAILA	BLE OPTIONS
Operating		Option No	o. Description
Non-Operaling	.–65°C to +125°C	3	SMA female bias/control connectors
Driver!ess Units		7	SMA male RF connectors
Operating		9	Inverse control logic; logic "0" for port OFF
Non-Operating	2 / /	Ū	and logic "1" for port ON (No.
Dumidity	.MIL-STD-202F, Method		7 37
V.V	103B, Cond. 3 (96 hrs. at		applicable to Series 9 (92)
~	95%)	33	EMI filter solder-type blas/control terminals
Shock	.MIL-STD-202F, Method	41*	Internal video filter, common port only
	213B, Cond. B (75G, 6 msec)	42*	Internal video filter, output ports only
Vibration	.MIL-STD-202F, Method	43*	Internal video filier, all ports
	204D, Cond. B (.06" double	55	Frequency range 0.5 to 18 GHz. See page
	amplitude or 15G, whichever is less)	00	167
Altitude	.MIL-STD-202F, Method	64A	SMB male bias/control connectors
Allitudo	105C, Con (£ (50,000 ft.)	G09	Guaranteed to meet Environmental Ratings
Tomp Cycling	/ 18 -	GU.	
Temp. Cycling		G\2	RoHS Compliant
	107D, Cond. A, 5 cycles		

*Not applicable to Series 92//F92/G92. See Video Filter Options on page 167

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

Series 91 and 92 Miniature Broadband SP4T Switches

MODELS 9140-500 AND 9246-500

These switches provide high-performance characteristics over a multi-octave frequency range. Model 9140-500 covers the 1 to 18 GHz frequency range while the Moorl 9240-500 covers the 0.2 to 4 GHz range. Their description and operation are the same as that for the Models 9120-500 and 9220-500 SP2T switches.

MODELS 9140T-500, 9140W-500 1240T-500

These switches are Non-reflective versions of the switches described above.

MODELS 9140AH-500 AND 9140AHT-500

These switches are the same as the 9120AH-500 and the 9120AHT-500 except for the number of ports.

SERIES F91 AND F92

The Series F91 and F92 switches are the same as the corresponding Series 91 and 92 models except the units are equipped with integrated divers.

SERIES G91 AND G92

These switches are the same as the Series G91 and G92 SP2T switches except for the number of ports.

展別用原規則

- requency range (Series 91): 1 to 18 GHz
- Frequency range (Series 92): 0.2 to 4 GHz
- Rise and fall times as fast as 10 nsec
- Reflective and Non-reflective models
- Low VSWR and insertion loss
- Isolation: up to 60 dB
- Miniature size, light weight

Switch Model F9140AH (WITH INTEGRATED DRIVER)

Switch Model 9140AH-500

ries 91 and 92 SPAT Switches Specifications

	VA V		VA.	KA			
MODEL	1,		1.1	FREQUEN	ICY (GHz)		
NO. ⁽¹⁾	CHARACTERISTIC	0.2-1	-2	2-4	4-8	8-12.4	12.4-18
9140-500*	Min Isolation (dB)		> 60	60	60	60	50
F9140	Max. Insertion Loss (dB)	The Man	1.4	1.4	1.5	2.0	2.8
	Max. VSWR (ON)	1777	1.75	1.75	1.75	1.75	2.0
G9140*	Min. Isolation (dB)	22,-	60	60	60	60	50
111	Max. Insertion Loss (dB)	_	2.0	2.0	2.2	2.7	₹.0
	Max. VSWR (ON)	_	1.5	1.5	1.7	18	2.0
5040-500*	Min. Isolation (db)	60	60	60	_	XX-Y	_
₹9240*	Max. Insertion Loss (dB)	1.5	1.5	1.5	- N -	K2	_
	Max. VSWR (ON)	1.6	1.6	1.6	-/X	_	_
G9240*	Min. Isolation (dB)	60	60	60	XX.	-	-
	Max. Insertion Loss (dB)	2.0	2.0	2.0		_	_
	Max. VSWR (ON)	1.5	1.5	1,5	√ −	_	_
9140T-500*	Min. Isolation (dB)	_	50	150	45	40	40
F9140T*	Max. Insertion Loss (a5)	_	1.5 ੍ -	1.5	1.7	2.0	2.5
G9140T*	Max. VSWR (ON O. OFF)	_	1.5	1.5	1.7	1.7	2.0
9240T-500*	Min. Isolation (dB)	50	(50)	50	_	-	_
F9240T*	Max. Insertion Loss (dB)	1.3	(3	1.5	_	_	_
G9240T*	Max. VSWR (ON or OFF)	1.5	1.5	1.5	_	-	_
9140W-500*	Min. solation (dB)	_	60	60	60	60	55
F9140W	Max Insertion Loss (dB)	_	2.0	2.0	2.2	2.7	3.0
G9140W*	Wax. VSWR (ON or OFF)	_	1.5	1.7	1.7	2.0	2.0
9140AH-500*	Min. Isolation (dB)	-	60	60	60	60	50
F91407H	Max. Insertion Loss (dB)	-	1.4	1.4	1.5	2.0	2.8
XXV	Max. VSWR (ON)	_	1.75	1.75	1.75	30	2.0
9140AHT-500*	Min. Isolation (dB)	- A	60	60	60	60	50
F9140AHT	Max. Insertion Loss (dB)	-//A	1.6	1.6	1.8	2.5	3.3
	Max. VSWR (ON)		1.75	1.75	1.9	2.0	2.0
	Max. VSWR (OFF)	15	1.75	1.75	2.0	2.2	2.3
	X.				- X 2 \ \		

^{*}Special-order product. Consult factory before ordering.

PERFORMANCE CHARACT

Power Handling Capability

Without Performance Degradation

Units without "T" or "W" suffix: "W cw or peak

Units with "T" or "W" suftly Input to any "OFF" post 100 mW cw or peak Input to any "ON" port 1W cw or peak Input to commen port: 1W cw or peak

Survival Power

Units with vet 1" or "W" suffix: 1W average, 75W peak (1 µsec max. pulse width)

Units with "T" or "W" suffix

Input to any "OFF" port: 1W average, 10W peak (1 µsec max. pulse width)

Input to any "ON" port: 1W average

75W peak (1 µsec max. pulse width)

Input to common port: 1W average, 75W peak (1 µsec max pulse width)

⁽¹⁾ Models prefixed with "F" or "G" are equipped with integrated TTL-compatible drivers; models with out the "F" or "G" prefix are current-controlled units and are furnished without drivers; models suffixed with "T" or "W" are non-refiec ive except a high VSWR will be present at the common port if all other ports are OFF; models suffixed with "H" are high-speed unit

Series 91 and 92 SPAT Switches pecifications

Switching Characteristics **SERIES 91/F91/G91**

Units without "H" suffix ON time..... 250 nsec max. OFF time 250 nsec max.

Units with "H" suffix

Rise time...... 10 nsec max. Fall time..... 10 nsec max. ON tinle 25 nsec max. OFF time 20 nsec max. Repetition rate................................ 20 MHz max.

SERIES 92/F92/G92

ON time...... 500 nsec max. OFF time 500 nsec max.

Power Supply Requirements

SERIES 91/92/F91/F92

Driverless Units

Bias current required at each port for rated is lation and insertion loss.

PORT OFF

Units without "H" suffix +50 mA Units with "H" suffix? > 30 mA

PORT ON

Units without "H" suffix -50 mA Units with "H" suffix -35 mA

Units With Integrated Drivers

(For	one port ON)	+5V ±5%	-12 to -15V
	Units Without "H'Suffix	190 mA	60 mA
	Units With "H" Suffix	95 mA	60 mA
	Units With "HT" Suffix	135 mA	60 mA 🔥

SERIES G91/G92

(For one port ON)

+5V ±5%, 150 mA +15V ±5%, 50 mA

(1) For driverless units durrent pulses must be provided by user.

Control Characteristics SERIES 91/92/F91/F92 Units With Integrated Drivers

Control Input Impedance

Units without "H" suffix TTL, low power Schottky. one unit load. (A unit load) is 0.8 mA sink current and 40 μA source currer t.>>

Units with "H" suffixTTL, advanced schottky, one unit load. A unit load

is 0.6 m/\sink current and 20 µA source current.)

Control LogicLogic "0" (-0.3 to +0.8V) tor port ON and logic "1"

(+2.0 to +5.0 V) for port OFF.

SERIES G91/G92

Control Input Impedance .. Schottky TTL, one unit

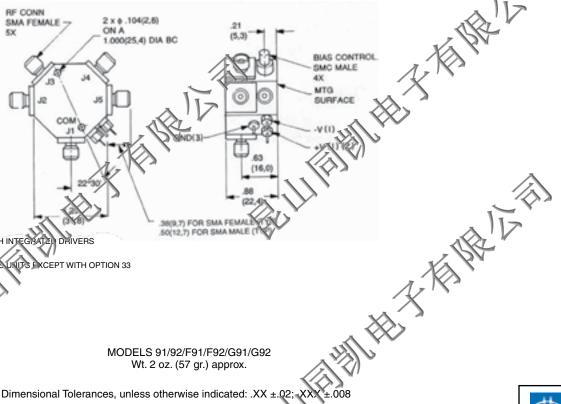
load. (A unit load is 2.0 mA sink current and 50 uA source current.)

Control LogicLogic "0" (-0.3 to +0.8V) for port ON and logic "1"

(+2.0 to +5.0 V) for port

OFF.

川原規制



Series 91 and 92 SR4T Switches Specifications

OPTION (G09) ENV	JRONMENTAL RATINGS	AVAILADI	LE OPTIONS
Temperature Range	× '	Option No.	Description
Units With Integrated		3	SMA female bias/control connectors
Operating Non-Operating		7	SMA male RF connectors
Driverless brits		9	Inverse control logic; logic "0" for port
Operating Non Operating			OFF and logic "1" for port ON (Not applicable to Series 91/92)
Humidity	MIL-STD-202F Method	33	EMI filter solder-type bias/control/ terminals
	103B, Cond. B (36 hrs. at 95%)	41*	Internal video filter, common port only
Shock	MIL-STD-202F, Method	42*	Internal video filter, output ports only
	213B, Cond. B (75G, 6 msec)	43*	Internal video finer, all ports
Vibration	MIL-STD-202F, Method	55	Frequey range 0.5 to 18 GHz. See page
	204D, Cond. B (.06" double		167.
	amplitude or 15G, whichever is less)	64A	SM3 thate bias/control connectors
Altitude	MIL-STD-2024 Method	G09 🧹	Guaranteed to meet Environmental
Allitude	105C, Cond B (00,000 ft.)	11	Hatings
Temp. Cycling	MIL-STD-262F, Method 107D, Cond. A, 5 cycles	G12	ŘoHS Compliant

*Not applicable to Series 92//F92/G92. See Video Filter Options on page 1567

DIMENSIONS AND WEIGHT

(1) USED ONLY ON UNITS WITH INTEGRATAL DRIVERS

(2) +15V FOR G91/G92 SERIES

(3) NOT USED ON DRIVERLESS UNITS FXCEPT WITH OPTION 33

MODELS 91/92/F91/F92/G91/G92 Wt. 2 oz. (57 gr.) approx.

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; -XXX ±.008

Model F9341T SP4T Phase & Amplitude Matched Switch

- Frequency range: 2 to 21 GHz
- Isolation: 50 dB
- · Phase and amplitude matched
- In-Line Outputs
- Non-reflective

Decoder (Optional)

LVDS Interface (Optional)

RS-422 / RS-485 Interface (Optional)

MODEL 59341T

Model 79341T is a low cost high-performance terminated SP4T switch that operates over the full instantaneous bandwidth of 2 to 21 GHz with ON and OFF times of 500 nsec. Design features include an integrated circuit assembly of PIN diodes mounted in microstrip transmission line.

The Model F9341T has all of the output ports on one side while maintaining Amplitude and Phase matching between all output ports.

The Model F9341T is equipped with a rintegrated driver that is powered by +5 and -12 voit supplies. The proper currents required to switch the ports ON or OFF are provided by the drive, which is controlled by external logic signals.

展別開開開

Model ₹9341T SP4T Specifications

ERFORMANCE CHARAC ERISTICS

	CHARACTERISTIC	SPECIFICATION
	Frequency Range (GHz)	2-21
	Min. solation (dB)	50
	Max. Insertion Loss (dB)	5.5
4	Max. VSWR (ON/OFF)	2.5
	V	N.

Phase & Amplitude Matching

展加斯樹

Amplitude Matching1 dB Typica Phase Matching12 Deg. Tyorcal

Switching Time

ON time......500 heec max. OFF time200 nsec max.

Power Handling Capability

Power Handling Capability Without Performance

Degradation

ON port 1W CW or

Peak

Survival PowerOFF port 1W average,

10W peak (1 µsec max

pulse width)

ON port 1 W average, 75W peak (1 psec max.

pulse width)

Power Supply Requirements

+5V ±5%, 190 mA -12V ±5%, 60 mA

Control Characteristics XXXXXX

Control Input

Impedance.. Schouky TTL, two unit loads. (A uMit load is 0.4 mA sink current and 40 µA source current.)

Logic "0" (-0.3 to +0.8V) for port Control Logic

ON and logic "1" (+2.0 to +5.0V)

for port OFF.

OPTION (G09) WIRONMENTAL RATINGS

Operating Temperature

Range...-54°C to +110°C

Non-Operating

Temperature Range-65°C to +125°C

HunidityMIL-STD-202F, Method

103B, Cond. B (96 hrs. at

95%)

Shock.....MIL-STD-202F, Method

213B, Cond. B (75G,

6 msec)

VibrationMIL-STD-202F, Method

204D, Cond. B (.)6

double amplitude or 15G. whichever is less)

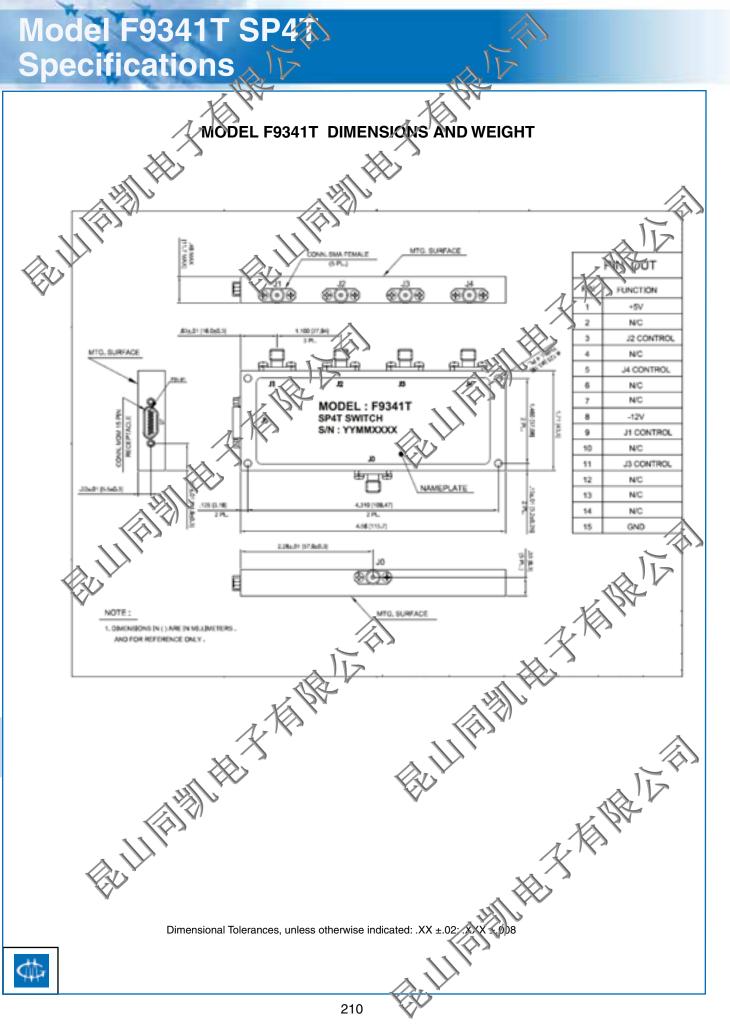
MIL-STD-202F, Method Altitude

105C, Cond. B (50,000 ft.)

Temp. CyclingMIL STD-202F, Method

107D, Cond. A, 5 cycles

AVAILABLE O


Description Option No.

✓

Guaranteed to meet Environmental G09 ALL THE PARTY OF T

Model F9341T SP4

Low Cost SP4T Switch

MODEL 2578

The Model 2578 is a low cost high-performance terminated SP4T switch that operates over the full instantaneous band width of 6 to 18 GHz with ON and OFF times of 250 nsec. Design features include an integrated circuit/assembly of PIN diodes mounted in a microstrip transmission line.

The Model 2578 is equipped with an integrated driver that is powered by +5 and -12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the driver, which is controlled by 展別展開 external logic signals.

Frequency range: 6 to 18 GHz Isolation: up to 55 dB · Phase and amplitude Matched Non-reflective J5-CONTROL 限加速 限加州和

Model 2578 Low Cost SP4T Switck **Specifications**

PERSORMANCE CHARACTER

CHARACTERISTIC	>
Frequency Ranga (GHz)	6-18
Min. Isolation (dB)	55
Max. Insertion Loss (dB)	3.5
Max VSWR (ON/OFF)	2.0

Switching Time

ON time......250 nsec max. OFF time250 nsec max.

Power Handling Capability

展加斯撒

Without Performance

Degradation500 mW cw ox peak

Survival Power

Input to any "OFF" port: 10 average, 10W peak

1 usec max. pulse width)

♥W average, 75W peak Input to any "ON" por

(1 µsec max. pulse width)

Input to common port: 1W average, 75W peak

(1 µsec max. pulse width)

Power Supply Requirements

+5V ±5% 135 mA -12V ±5%, 60 mA

Control Characteristics

Control Input

ImpedanceSchottky TTL, two unit loads (A unit load is 2 mA sink current.

and 50 µA source current.)

Control LogicLogic "0" (-0.3 to +3.87) for port

混川間期

ON and logic 1" (+2.0 to +5.0V)

for port OFF.

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

......–54°C to +110°C

Non-Operating

Temperature Range-65°C to +125°C

HumidityMIL-STD-202F, Method

103B, Cond. B (96 hrs. at

95%)

Shock......MIL-STD-202F, Method

213B, Cond. B (75G,

6 msec)

VibrationMIL-STD-202F, Method

204D, Cond. B (.06", double amplitude of 15G,

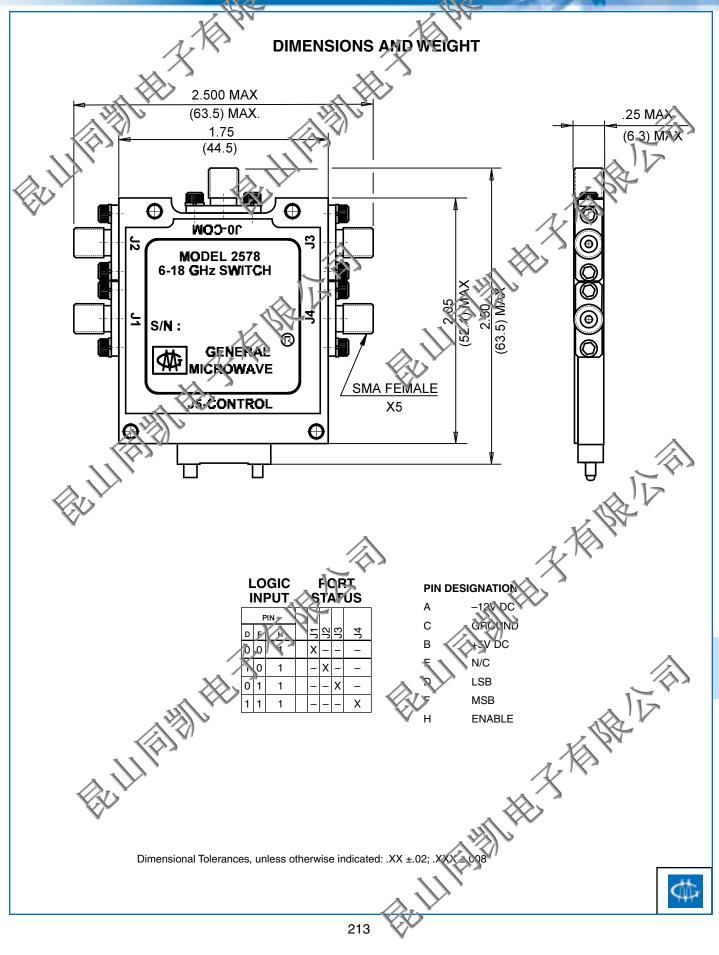
whichever is less

AltitudeMIL-STD-2025, Weinod

105C, Cond. B (50,000 ft.)

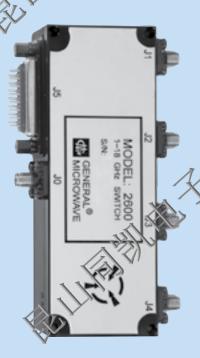
Temp. CyclingMIL-STD-202F, Method

107D Cond. A, 5 cycles


AVAILABLE OPT

Option No.

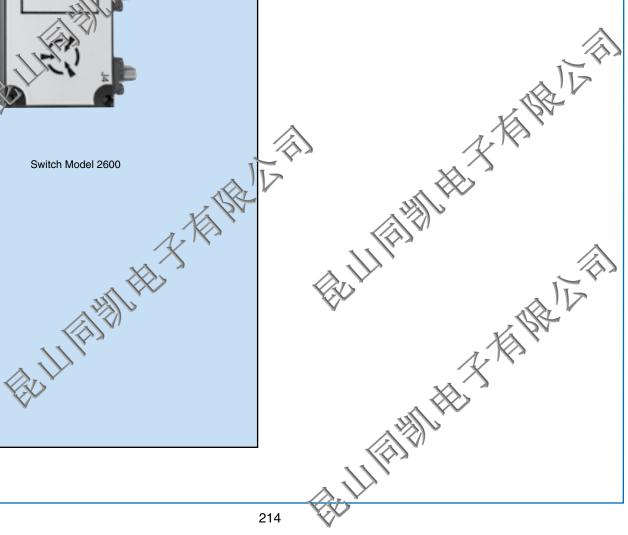
Gyaranteed to meet Environmental **G09**



Model 2578 Low Cost SP4T Switch Specifications

Series 2600 SP4T 💸 Amp & Phase Matched Switches

- Frequency range: to 18 GHz
- Isolation: Up to 50 dB
- · All in-line outputs
- Phase and amplitude matched
- Non-reflective

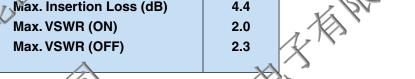


MODEL 1600

The Model 2600 is a low cost high-performance terminated SP4T switch that operates over the full instantaneous bandwidth of 1 to 18 GHz with ON and OFF times of 200 nsec. Design features include an integrated circuit assembly of PIN diodes mounted in microstrip transmission line.

The Model 2600 has all of the output ports on che side while maintaining Amplitude and Phase matching between all output ports.

The Model 2600 is equipped with an integrated driver that is powered by +5 and -12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the drive, which is controlled by external logic signals.



Series 2600 SP4T Specifications

CTERISTICS PERFORMANCE CHARA

	CHARACTERISTIC	Model 2600
	Frequency Range (GHz)	1-18
, m	Min Isolation (dB)	50
	Max. Insertion Loss (dB)	4.4
\langle	Max. VSWR (ON)	2.0
	Max. VSWR (OFF)	2.3
	A	No.

Amplitude & Phase MatchingDesigned for not tested

Switching Time

ON time......500 nsec.ma OFF time500 nsed may

Power Handling Capability /

Without Performance Degradation

Input to Common port 0.5 W CW or peak.

Survival Power

Input to any OFF port.....1W average, 10W, (1 µsec max. pulse width

Input to any ON port1W average, 75W peak (1 µsec max. pulse width)

Input to COMMON port 1W average, 75 peak (1 µsec max. pulse width)

Power Supply Requirements

+5V ±5%, 190 mA -12V ±5%, 60 mA

Control Characteristics

Control Input

schotky TTL, two unit loads. (A Impedance unit load is 2 mA sink current

and 50 µA source current.)

Logic "0" (-0.3 to +0.8V) for Control Logic port ON and logic "1" (+2.0 to

+5.0V) for port OFF.

OPTION (G09) KNWRONMENTAL RATINGS

Operating Temperature

Range -54°C to +110°C

Non-Operating

Temperature Range-65°C to +125°C

HuroidityMIL-STD-202F, Method 103B, Cond. B (96 hrs. at

95%)

Shock.....MIL-STD-202F, Method

213B, Cond. B (75G,

6 msec)

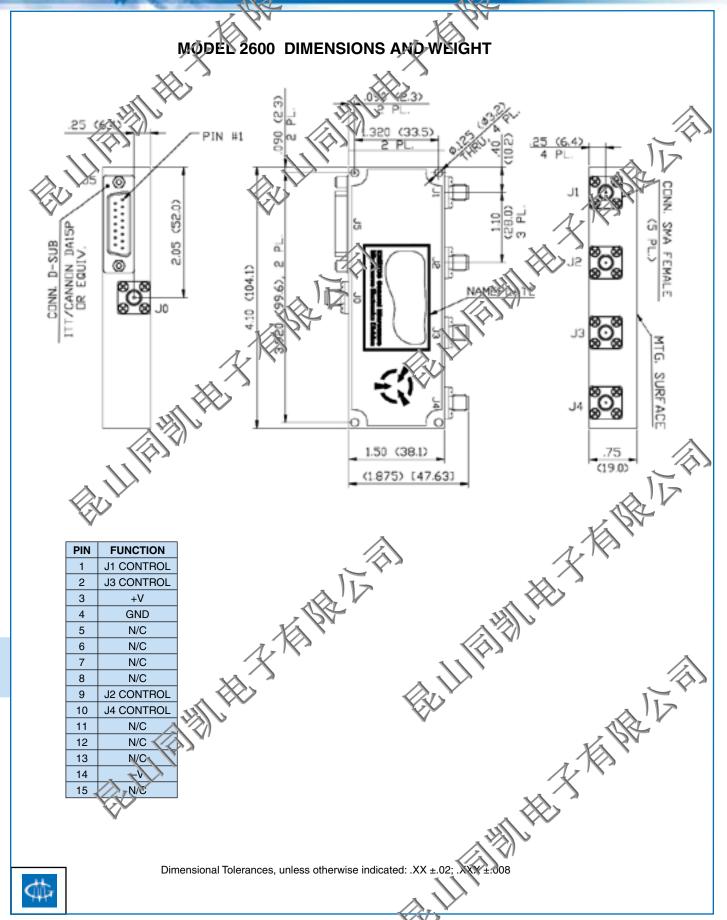
Vibration..... .MIL-STD-202F, Method

204D, Cond. B (.06" double amplitude or 75G,

whichever is less). AltitudeMIL-STD-202F, Method

105C, (lond. B (50,000 ft.)

107D Cond. A, 5 cycles


AVAILABLE OF

Option No. Description

Guaranteed to meet Environmenta **G09** ALL THE REPORT OF THE PARTY OF

Series 2600 SP4T Switches Specifications

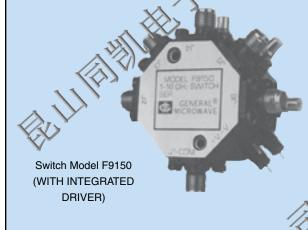
Series 91 and 92 Miniature Broadband SP5T Switches

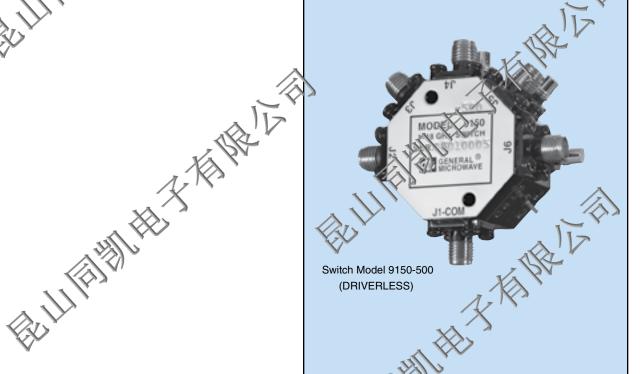
MODELS 9150-500 AND 9250-500

These switches provide high-performance characteristics over a multi-octave frequency range. The Model 9150-500 covers the 1 to 18 GHz frequency range while the Model 9250-500 covers the 0.2 to 4 GHz range. This description and operation are the same as that for the Models 9120-500 and 9220-500 SP2T switches.

MODELS 9150T-500, 9150W-500 D 9250T-500

These switches are non-reflective versions of the switches described above.


SERIES F91 AND F92


The Series F91 and F92 switches are the same as the corresponding Series 91 and 92 models, except the units are equipped with integrated drivers

SERIES G91 AND G92

These switches are the same as the Series G91 and G92 SP2T switches except for the number of ports.

- Frequency range (Series 91): 1 to 18 GHz
- Frequency range (Series 92):
 0.2 to 4 GHz
- Reflective and Non-reflective models
- Low VSWR and insertion loss
- Isolation: up to 60 dB
- Miniature size, light weight

Series 91 and 92 SPST Switches Specifications

	Va \			<u> </u>			
MODEL	1.		1	FREQUEN	ICY (GHz)		
NO. ⁽¹⁾	CHARACTERISTIC	0.2-1	1/2	2-4	4-8	8-12.4	12.4-18
9150-500*	Min. (so)ation (dB)	- <	\$60	60	55	50	50
F9150*	Max. Insertion Loss (dB) Max.VSWR (ON)	/Ju	1.5 1.5	1.5 1.5	1.5 1.75	2.0 1.75	3.0 2.0
	<u> </u>						
G9150*	Min. Isolation (dB)		60	60	60	60	50
111	Max. Insertion Loss (dB) Max. VSWR (ON)	/, -	2.2 1.5	2.2 1.5	2.4 1.8	3.0 2.0	3.3
	, , , , , , , ,	_			1.0	2.0	2/2
9250-500*	Min. Isolation (dB)	60	60	60	_	V	\ -
F3250*	Max. Insertion Loss (46) Max. VSWR (ON)	1.5 1.6	1.5 1.6	1.5 1.6	_	, (()	_
	, ,	1.0	1.0			Z 1-\	_
G9250*	Min. Isolation (dB)	60	60	60	/	> -	-
	Max. Insertion Loss (dB)	2.27	2.2 1.5	2.2 1.5	. <>>>	_	-
	Max. VSWR (ON)			1.5	1/20	_	_
9150T-500*	Min. Isolation (dB)	117	50	50	45	40	40
F9150T* G9150T*	Max. Insertion Loss (dB)	- W -	1.5	(2)	2.0	2.5	3.0
G91501	Max. VSWR (ON or OFF)	_	1.5	1/2	1.7	2.0	2.2
9250T-500*	Min. Isolation (dB)	60	60,	50	_	_	-
F9250T*	Max. Insertion Loss (dB)	1.4	(Q)	1.5	_	_	_
G9250T*	Max. VSWR (ON on OFF)	1.5	1.5	1.5	_	_	_
9150W-500*	Min. Isolation (dB)	_	60	60	60	60	55
F9150W	Max. Insertion Loss (dB)	_	2.2	2.2	2.4	3.0	3.3
G9150W*	Max. VSWP (ON or OFF)	_	1.5	1.7	1.8	2.0	2.2

^{*}Special-order product. Cosult factory before ordering.

PERFORMANCE CHARACTERISTICS

Power Handling Capability

Without Reformance Degradation

Units without "T" or "W" suffix: 1W cw or peak

Units with "T" or "W" suffix

Input to any "OFF" port: 100 mW cw or peak Input to any "ON" port: 1W cw or peak

Input to any "ON" port: 1W cw or peak Input to common port: 1W cw or peak

Survival Power

Units without "T" or "W" suffix: 1W average 75W peak (1 µsec max. pulse width)

Units with "T" or "W" suffix

Input to any "OFF" port: 1W avarage,

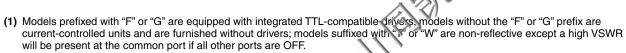
10W peak (1 µsec max. pvise width)

Input to any "ON" port. Waverage,

75W peak (1 µsec max/pulse width)

Input to common portal W average, 75W peak (1 pses max. pulse width)

Switching Time⁽²⁾


SERIES 91/F91/G91

ON time	250 nsec max.
OFF time	250 rsec max.
With Option C37	
Print Option 007	TOO HSEC HIAX.

SERIES 92/F92/G92

ON time		500	nsec	max.
OFF time	<u> </u>	500	nsec	max.

头杨腿~

(2) For driverless units, shaped current pulses must be provided by the use

Series 91 and 92 SAST Switches Specifications

Power Supply Requirement	ŊS
SERIES 91/92/F91/F92	

Driverless Units

Bias current required at each port for rated isolation and insertion loss.

Port OFF+50 mA Port ON.....-50 mA

Units With Integrated Drivers

(For one port ON)+5V ±5%, 250 m/ -12 to -15V, 80 m/

SERIES G91/G92

(For one port ON)+5V ±5%, 150 mA +15V ±5%, 60 mA

Control Characteristics

SERIES 91/92/F91/F92

Units With Integrated Drivers

Control Input

ImpedanceTTL, low power Schottky, one unit load. (A unit load is 0.8 mA sink current and 40 µA source

current.)

Control Logic "0" (-0.3 to +0.8V) for port NN and logic "1" (+2.0 to

35.0V) for port OFF.

SERIES G91/G92

Control Input

Impedance... ..Schottky TTL, one unit load. (A unit load is 2.0 mA sink current and 50 µA source current.) .Logic "0" (-0.3 to +0.8V) for Control

port ON and logic "1" (+2.0 to +5.0V) for port OFF.

*Not applicable to Series 92/F92/G92. See Video Filter Options on page 167

buy of 1 ** Not applicable to series 92/F92/C92. Minimum order buy of 100 switches

OPTION (G09) ENVIRONMENTAL RATINGS

Temperature Range

Units With Integrated Drivers

Operating -54°C to +110°C Non-Operating -65°C to +125°C

Driverless Units

Operating -54°C to +125°C Non-Operating -65°C to +125°C

Humidity MIL-STD-202F, Method 103B,

Cond. B (96 hrs. at 95%)

Shock...... MIL-STD-202F, Method 213B,

Cond. B (75G, 6 msec)

MIL-STD-202F, Method 204D,

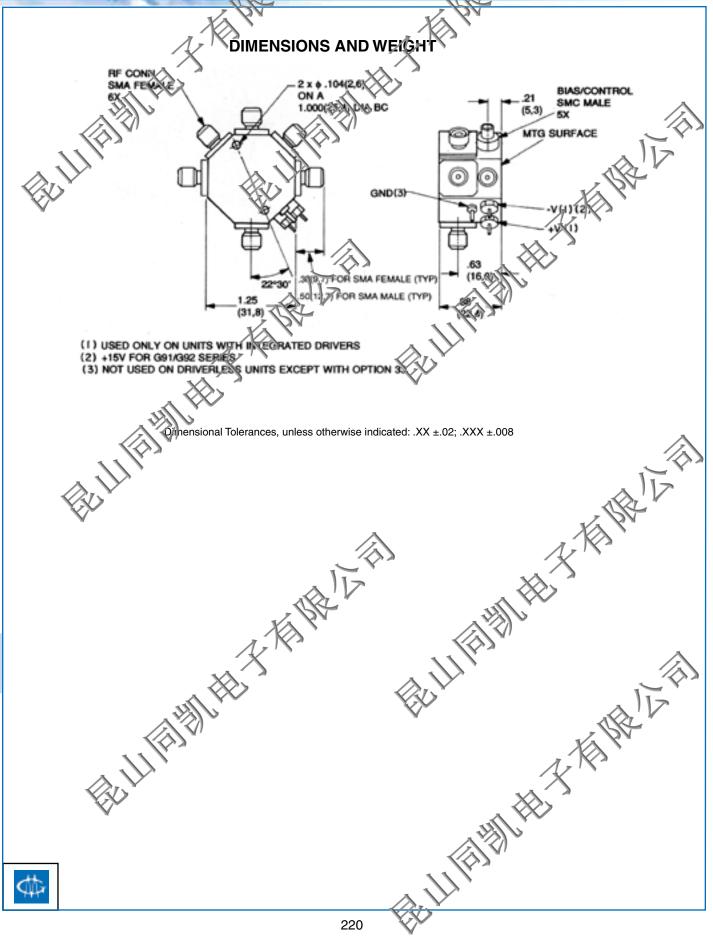
Cond. B (.06" double amplitude

or 15G, whichever is less)

MIL-STD-202F, Method 105C, Altitude

Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-202F, Method 107D,


Cond. A, 5 cycles

AVAILABLE OPTIONS

Option No.	Description
3	SMA female bias/control connectors
7	SMA male RF connectors
9	Inverse control logic; logic "0" for port OFF
	and logic "1" for port ON (Not applicable to
	Series 91, 92)
33	EMI filter solder-type bias/control terminals
41* 40*	Internal video filter, common cott only
42* 43*	Internal video filter, output pocts only Internal video filter, all ports
43 55	Frequency range 0.5 to 18 GHz. See page
V 23	167
64A	SMB male bia /control connectors
C37**	100 nsec. switching time
G09	Guaranteed to meet Environmental Ratings
G12	PoHS Compliant
4	
- 1	
121	1-
XXV	A 1/2
*	The "
	NA PV
	7-10
	/ / / · ·

	JIII .
	Y
19	•
- V	

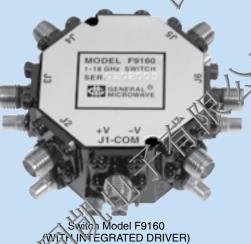
Series 91 and 92 SPST Switches **Specifications**

Series 91 and 92 Miniature Broadband SP6T Switches

MODE 9160-500 AND 9260-500 These switches provide high-performance

MODELS 9160T-500, 9160W-500

characteristics over a multi-octave frequency range. Model 9160-500 covers the 1 to 18 GHz frequency


range while the Model 9260-500 covers the 0.2 to 4

GHz range. Their description and operation are the same as that for the Models 9120-500 and 9220-500

These switches are non-reflective versions of the

- Frequency (2006) (Series 92): 0.2 to 4 GHz
- Reflective and non-reflective models
- Low VSWR and insertion loss
- Isolation: up to 60 dB
- Miniature size, light weight

switches described above. SERIES F91 AND 592

AND 9260T-500


SP2T switches.

The Series F91 and F92 switches are the same as the corresponding Series 31 and 92 models, except the units are equipped with integrated drivers.

SERIES GOT AND G92

These switches are the same as the Series G91 and G92 SP21 switches except for the number of ports.

最加加斯斯

Switch Model 9160-500 (URIVERLESS)

Series 91 and 92 SPOT Switches Specifications

	1/A Y		1/A	K			
MODEL	1.		1.1	REQUEN	ICY (GHz)		
NO.(1)	CHARACTERISTIC	0.2-1	1-2	2-4	4-8	8-12.4	12.4-18
9160-500*	Min Isolation (dB)		60	60	55	50	50
F9160*	Max. Insertion Loss (dB) Max. VSWR (ON)	17/1/2	1.6 1.6	1.6 1.6	1.8 1.9	2.2 2.0	3.4 2.2
G9160*	Min. Isolation (dB)	<u> </u>	60	60	60	60	50
TI KEY	Max. Insertion Loss (dB)	_	2.2	2.2	2.6	3.2	3.5
	Max. VSWR (ON)	-	1.6	1.6	2.0	2.2	2/3
9260-500*	Min. Isolation (dS)	60	60	60	_	1/2/21	V –
F9200*	Max. Insertion Loss (ฮ์B) Max. VSWR (ON)	1.5 1.6	1.5 1.6	1.5 1.6	- - 1		_
G9260*	Min. Isolation (dB)	60	60	60		_	-
	Max. Insertion Loss (dB) Max. VSWR (ON)	2.2	2.2 1.6	2.2 1.6		_ _	_ _
9160T-500*	Min. Isolation (dB)	-	50	50	45	40	40
F9160T* G9160T*	Max. Insertion Loss (ds)	-	1.5	(S)	2.2	2.7	3.2
	Max. VSWR (ON or OF)	_	1.6	7.6	1.8	2.0	2.2
9260T-500* F9260T*	Min. Isolation (dB) Max. Insertion Loss (dB)	60 1.5	60	50 1.5	_	_	_
G9260T*	Max. VSWR (CN or OFF)	1.5	(N)	1.6	_	_	_
9160W-500*	Min. Isolation (dB)	_	60	60	60	60	55
F9160W	Max insertion Loss (dB)	_	2.2	2.2	2.6	3.2	3.5
G9160W*	Max. VSWR (ON or OFF)	_	1.7	1.7	2.0	2.2	2.3

^{*}Special-order product. Consult factory before ordering.

PERFORMANCE CHARACTERISTICS

Power Handling Capability

Without Performance Degradation

Units without "T" or "W" suffix: 1W cw or peak

Units with "T" or "W" suffix

Input to any "OFF" port: 100 mW cw or peak Input to any "ON" port: 1W cw or peak

Input to common port: 1W cw or peak

Survival Power

Units without "T" or "W" suffix: 1W average, 75W peak (1 µsec max. pulse wicth)

Units with "T" or "W" suffix

Input to any "OFF" port: 1W average, 10W peak (1 µsec max. pulse width)

Input to any "ON" porc 1 W average,

75W peak (1 usec max. pulse width) Input to common port: 1W average,

nput to common cort. 1W average,
75W peak (1 usec max. pulse width)

Switching Time⁽²⁾

SERIES 91/F91/G91

SERIES 92/F92/G92

加展期提及

Series 91 and 92 SEST Switches

Power Supply Requirements SERIES 91/92/F91/F92

Driverless Units

Bias current required at each port for rated isolation and insertion loss

Port OFF+50 mA Port ON-50 mA

Units With Integrated Drivers

(For one port ON)+5V ±5%, 315 mA -12 to -15V, 60 mA

SERIES G91/G92

(For one port ON)+5V ±5%, 150 mA +15V ±5%, 70 mA

Control Characteristics

SERIES 91/92/F91/F92

Units With Integrated Drivers

Control LogicLogic "0" (-0.3 to +0.5V) for port ON and logic "1" (+2.0 to

+5.0V) for port OFF.

Control Input

ImpedanceTTL, low power Schottky, one

unit load. (A unit load is 0.8 mA sink current and 40 µA source

current.)

SERIES G91/G92

Control LogicLogic "0" (-0.3 to +0.8V) for port ON and logic "1" (+2.0 to

+5.0V) for port OFF.

Control nput

Imp. d. r.ceSchottky TTL, one unit load. (A

unit load is 2.0 mA sink current and 50 µA source current.)

*Not applicable to Series 92/F92/G92. See Video Filter Options propage 167

** Not applicable to series 92/F92/G92. Minimum order buy of 100 switches.

OPTION (309) ENVIRONMENTAL RATINGS

Temperature Range

Units With Integrated Drivers

Operating-54°C to +110°C Non-Operating -65°C to +125°C

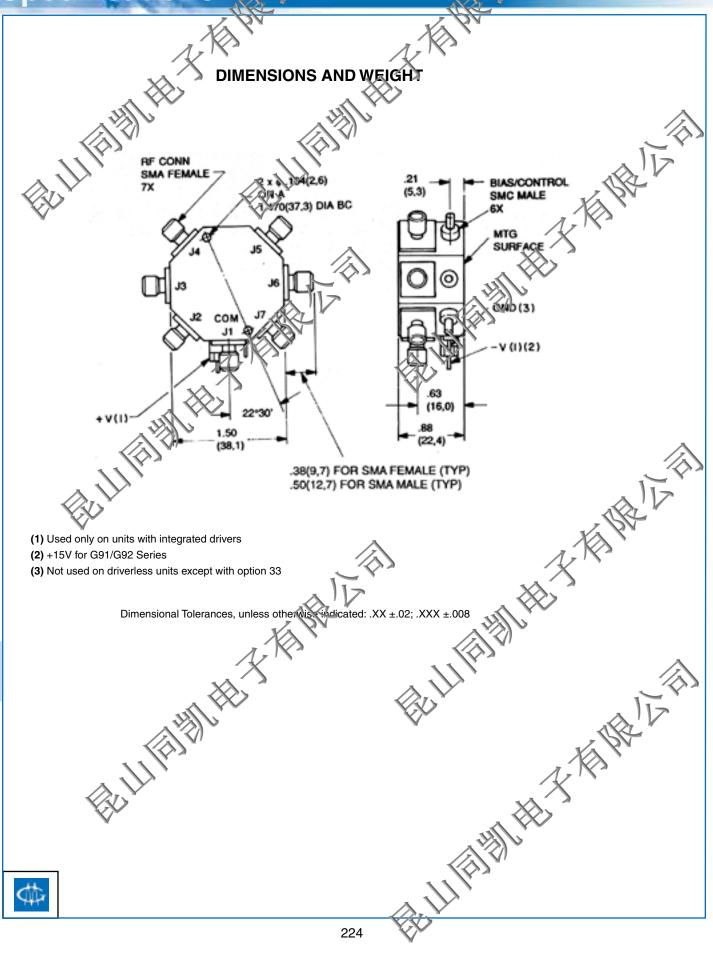
Driverless Units

Operating -54° C to $+125^{\circ}$ C Non-Operating -65° C to $+125^{\circ}$ C

Humidity MIL-STD-202F, Method 103B,

Cond. B (75%, 6 msec)

AltitudeMIL-STD-202F, Method 105C, Cond. B (50,000 ft.)


Temp. Cycling MIL-STD-202F, Method 107D, Cond. A, 5 cycles

AVAILABLE OPTIONS

ption No.	Description					
3	SMA female bias/control connectors					
7	SMA male RF connectors					
9	overse control logic; logic "0" for pert FF and logic "1" for port QN (Not pplicable to Series 91/92)					
33	EMI filter solder-type bias/control terminals					
41*	Internal video filter, common port only					
42*	Internal video lilter, output ports only					
43*	Internal video liiter, all ports					
64A	SMB male bias/control connectors					
C37**	100 nsec switching time					
G09	Guaranteed to meet Environmental					
1	Ratings					
612	RoHS Compliant					
~						

Series 91 and 92 SP&T Switches **Specifications**

Model \$9361T SP6T Phase & Amplitude Watched Switch

MODEL F9361T

Model F9361T is a low cost high-performance terminated SP6T switch that operates over the full instantaneous bandwidth of 2 to 21 GHz with ON and OFF times of 500 (sec. Design features include an) integrated curcuit assembly of PIN diodes mounted in a microstrip transmission line.

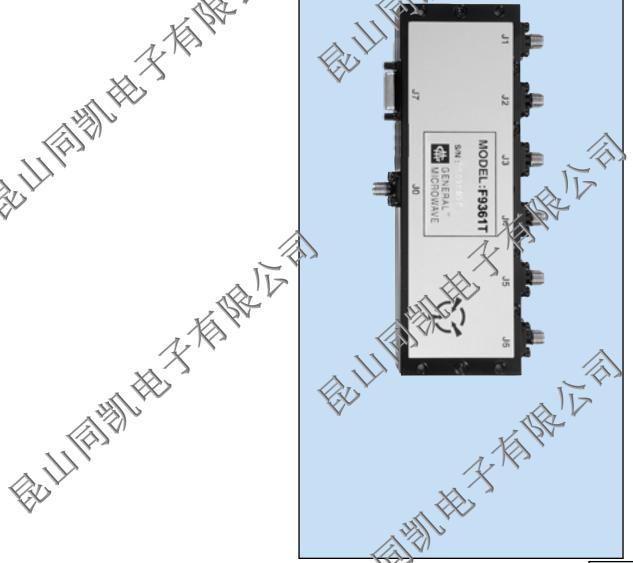
The Model F9361T has all of the output ports on one side while maintaining Amplitude and Phase matching between all output ports.

The Model F9361T is equipped with an integrated driver that is powered by +5 and -12 volt supplies. The proper currents required to switch the ports ON or A siled by OFF are provided by the driver, which is controlled by external logic signals.

• Frequency range: 2 to 21 GHz

Isolation: 55 dB

· Phase and amplitude matched


Non-reflective

In-Line Outputs

Decoder (Optional)

LVDS Interface (Optional)

• RS-422 / RS-485 Interface (Optional)

Model F9361T SP67 **Specifications**

RERFORMANCE CHARACTE

CHARACTERISTIC	SPECIFICATION
FREQUENCY RANGE (GM2)	2-21
MIN. ISOLATION (68)	55
MAX. INSERTION LOSS (dB)	5.5
MAX. VSWR (CN/OFF)	2.5

hase & Amplitude Matching

Amplitude Matching1 dB Typical Phase Matching12 Deg. Typical

Switching Time

ON time500 nsec max. **OFF time**500 nsec max.

Power Handling Capability

Without Performance

DegradationOFF port 100 mW cw or

QN por 1W CW or Peak

Survival Power OF5 port 1W average,10W

peak (1 µsec max. pulse

width)

ON port 1W Average, 75W peak (1 µsec max. pulse width)

Power Supply Requirements

+5V ±5%, 250 mA max -12V ±5%, 100 mA max

Control Characteristics

Control Input

Schottky TTL, two unit loads. **Impedance**

(A unit load is 0.4 mA sink current and 40 µA source

current.)

Control LogicLogic "0" (-0.3 to +0.8V) for

Port "ON"

Logic "1" (+2.0 to +5.0V) for

Port "OFF".

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature Range -54°C to +110°C

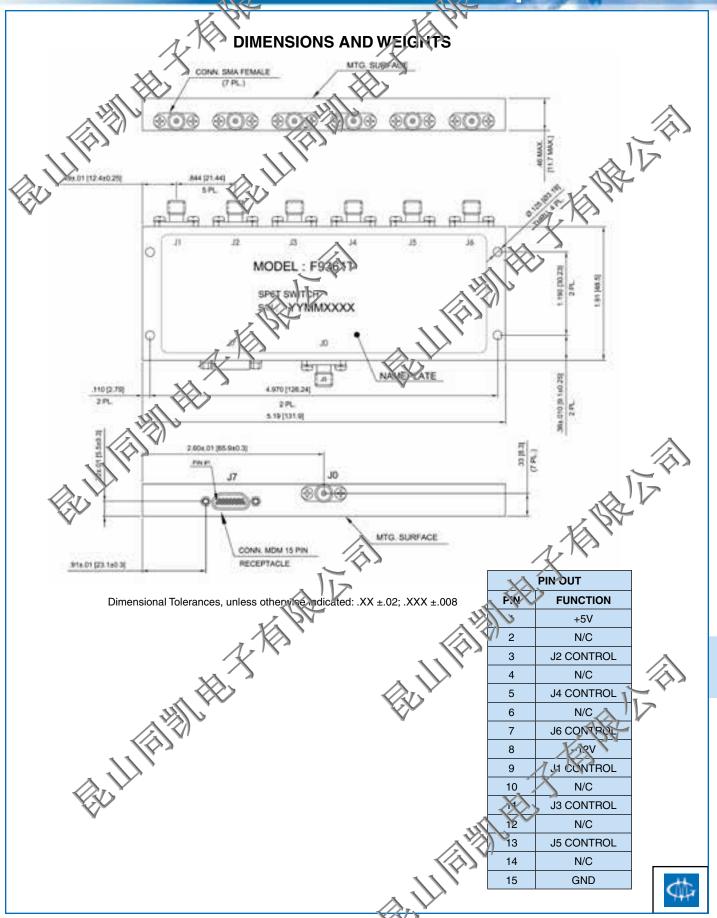
Non-Operating Temperature Range -65°C to +125°C

15G, whichever is less)

川原規制

MIL-STD-202F, Method 107D, Cond. A, 5 cycles Temp. Cycling

AVAILABLE OPTION


Option No. Rescription

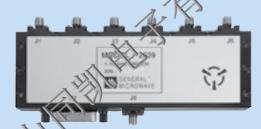
G09 Quaranteed to meet Environmental Ratings

-12V & +6V to +15V **G11 G12 RoHS** Compliant

Model 9361T SP6T Specifications

Model 2629 Low Cost SP6T Switches

MODEL 2629


Model 2629 is a Low Cost nigh-performance terminated SP6T switch that operates over the full instantaneous bandwidth of 1 to 18 GHz with ON and OFF times of 500 nsec.

The Model 2629 is equipped with an integrated driver that is powered by +5 and -12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the driver, which is controlled by external logic signals.

限加州和

展別展場

- Frequency range: 1 to 18 GHz
- Isolation: up to 55 dB
- · All in-line outputs
- Phase and amplitude matched
- Non-reflective

Switch Model 2629

Model 2629 SEST Switches Specifications

PERFORMANCE CHARACTER STICS

PERFORMANCE CHARACTERISTICS					
×/	CHARACTERISTIC	MOI	DEL		
ul (R)	CHARACTERISTIC	2629	2626-C99		
	FREQUENCY RANGE (GHz)	1-18	2-21		
	MIN. ISOLATION (13)	55	55		
	MAX. INSERTION LOSS (dB)	4.8	5.5		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MAX. VSWR (ON/OFF)	2.2	2.5		
V	PHASE MATCHING BETWEEN PORTS (deg, max)	±10	±15		
	AMPLITUDE MATCHING BETWEEN PORTS (dB, max)	±0.6	€).5		
	HARMONICS @ +25 d3m (dBc, max)	-35	○ –35		

Switching Time

.....590 nsec max. ON time..... OFF time

Power Handling Capability

Without Performance

Degradation OFF port 100 mW cw or peak

ON port 1W average

A Power OFF port 10W peak,

ON port 75W peak (1 µsec

Power Supply Requirements

限加州和 +5V ±5%, 250 mA max $-12V \pm 5\%$, 100 mA max

Control Characteristics

Control Input

ImpedanceSchottky TTL, two unit loads.

(A unit load is 2 mA sink current and 50 µA source

current.)

Control LogicLogic "0" (-0.3 to +0.8V) for Port "ON"

Logic "1" (+2:015 L5.0V) for Port "OFF".

展別開期提

Model 2629 SP6T Switches Specifications

RATINGS

Operating Temperature Range -54°C to +110°C Non-Operating Temperature Range -65°C to +125°C

Sumidity MIL-STD-202F, Method 103B, Cond. B (96 hrs. at 95%)

Shock...... MIL-STD-202F, Method 213B,

Cond. B (75G, 6 msec)

Vibration MIL-STD-202F, Method 204D, Cond. B (.06" double amplitude or

15G, whichever is less)

展別開閉

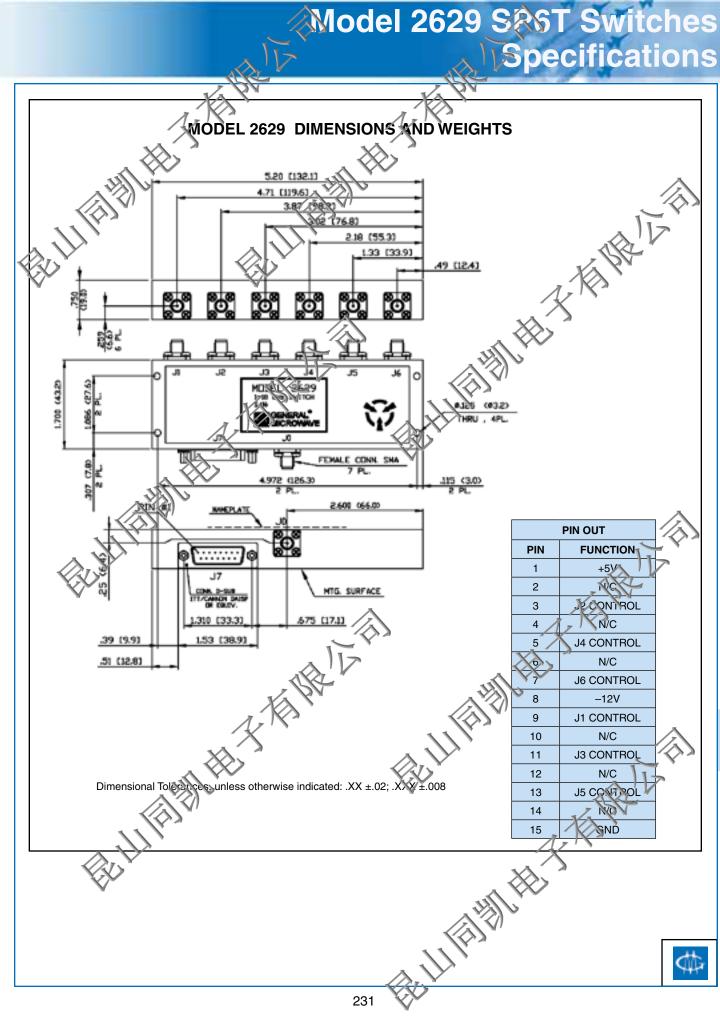
Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-202F, Method 107D,

Cond. A, 5 cycles

AVAILABLE OPT

Option No. Description


G09 Guaranteed to meet Environmental Patings

G12 AoHS Compliant

展別展開

ф

Model 2629 SEST Switches Specifications

Series 91 and 92 Miniature Broadband SP7T Switches

MODELS 9170-500 AND 9270-500

These switches provide high-performance characteristics over a math-octave frequency range. Model 9170-500 covers the 1 to 18 GHz frequency range while the Model 9270-500 covers the 0.2 to 4 GHz range. Their description and operation are the same as that for the Models 9120-500 and 9220 500 SP2T switches.

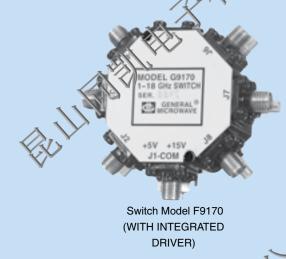
MODELS 9170T-500, 9170W-500 AND 9270T-500

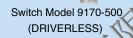
These switches are non-reflective versions of the switches described above.

SERIES F91 AND F92

The Series F91 and F92 switches are the same as the corresponding Series 91 and 92 models, except the units are equipped with integrated drivers.

SERIES G91 AND G92


These switches are the same as the Series G91 and G92 SP2T switches except for the number of ports.


展別用原規則

Frequency range (Series 91):

to 18 GHz

- Frequency range (Series 92):
 0.2 to 4 GHz
- Reflective and non-reflective models
- Low VSWR and insertion loss
- Isolation: up to 60 dB
- · Miniature size, light weight

Series 91 and 92 SATT Switches

	MODEL	1, 1		J.K	REQUEN	ICY (GHz)		
	NO. ⁽¹⁾	CHAPACTERISTIC	0.2-1	12	2-4	4-8	8-12.4	12.4-18
	170-500*	Min. (solation (dB)	- 💸	60	60	55	50	50
	9170*	Max. Insertion Loss (dB) Max. VSWR (ON)	THE .	1.75 1.75	1.75 1.75	2.0 2.0	2.6 2.2	3.8 2.4
(G9170*	Min. Isolation (dB)	<u> </u>	60	60	60	60	50
	1111	Max. Insertion Loss (dB) Max. VSWR (ON)	_	2.2 1.7	2.2 1.7	2.8 2.2	3.5 2.2	3.8 2.4
	270-500*	Min. Isolation (dB	60	60	60	_	1-50	_
*	9270*	Max. Insertion Loss (GB) Max. VSWR (ON)	1.5 1.6	1.5 1.6	1.5 1.6	- -1)	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	-
(G9270*	Min. Isolation (dB)	60	60	60	<u></u>	_	_
		Max. Insertion Loss (dB) Max. VSWR (ON)		2.2 1.7	2.2 1.7		-	_ _
	9170T-500*	Min. Isolation (dB)	ア ー	50	50	45	40	40
	F9170T* G9170T*	Max. Insertion Loss (d5) Max. VSWR (ON or OFF)	_	1.5 1.7	(\$\frac{1}{7}\)	2.4 2.0	3.0 2.2	3.5 2.4
ç	9270T-500*	Min. Isolation (dB)	60	60	50	_	_	_
	9270T*	Max. Insertion Loss (dB)	1.5	(A)	1.5	-	-	-
	G9270T*	Max. VSWR (ON or OFF)	1.5	1.5	1.7	_	_	_
	9170W-500*	Min. Isolation (dB)	_	60	60	60	60	55
1 -	F9170W* G9170W*	Max () sertion Loss (dB) Max. (SWR (ON or OFF)	_	2.2 1.7	2.2 1.7	2.8 2.2	3.5 2.2	3.8 2.4
								-

^{*}Special-order product. Consult factory before ordering.

PERFORMANCE CHARACTERISTICS

Power Handling Capability

Without Performance Degradation

Units without "T" or "W" suffix: 1W cw or peak

Units with "T" or "W" suffix

Input to any "OFF" port: 100 mW cw or peak

Input to any "ON" port: 1W cw or peak Input to common port: 1W cw or peak

Survival Power

Units without "T" or "W" suffix: 1W average 75W peak (1 µsec max. pulse with)

Units with "T" or "W" suffix

Input to any "OFF" port: 1 Waverage,

10W peak (1 µsec max. pulse width)

Input to any "ON" port 1W average,

75W peak (1 usec max. pulse width)

Input to common port: 1W average, 75W peak (1 µsec max. pulse width)

Switching Time⁽²⁾ SERIES 91/F91/G91

SERIES 92/F92/G92

- (1) Models prefixed with "F" or "G" are equipped with integrated TTL-compatible drivers; models without the "F" or "G" prefix are current-controlled units and are furnished without drivers; models suffixed with "T" or "W" are non-reflective except a high VSWR will be present at the common port if all other ports are OFF.
- (2) For driverless units, shaped current pulses must be provided by the user.

Series 91 and 92 SPXT Switches **Specifications**

Power Supply Requirements SERIES 91/92/F91/F92

Driverless Units

Bias current required at each port for rated isolation and insertion loss

Port OFF+50 mA Port ON...... **Units With Integrated Drivers**

(For one port ON)+5V ±5%, 375 mA -12 to -15V, 60 mA

SER ES G91/G92

(For one port ON)+5V ±5%, 190 mA +15V ±5%, 70 mA

Control Characteristics

SERIES 91/92/F91/F92 **Units With Integrated Drivers**

Control Input

ImpedanceTTL, low power Schott v, one unit load. (A unit load is 0.8 mA sink current and 40 µA source

current.)

Control Logic "C" (-0.3 to +0.8V) for port On and logic "1" (+2.0 to

+6.0V) for port OFF.

SERIES G91/G92 **Control Input**

Impedance Schottky TTL, one unit load. (A unit load is 2.0 mA sink current and 50 µA source current.)

.Logic "0" (-0.3 to +0.8V) for Control Logic port ON and logic "1" (+2.0 to +5.0V) for port OFF.

*Not applicable to Series 92/F92/G92.See Video Filter Options on

 ** Not applicable to series 92/F92/G92. Minimum order by of 100 switches Real Hard Hard Control of the Contro

OPTION (609) ENVIRONMENTAL RATINGS

Temperature Range

Units With Integrated Drivers

Operating......-54°C to +110°C Non-Operating..... -65°C to +125°C

Driverless Units

Operating -54°C to +125°C Non-Operating..... -65°C to +125°C

Humidity MIL-STD-202F, Method 103B, Cond. B (96 hrs. at \$5%)

Shock...... MIL-STD-202F Method 213B,

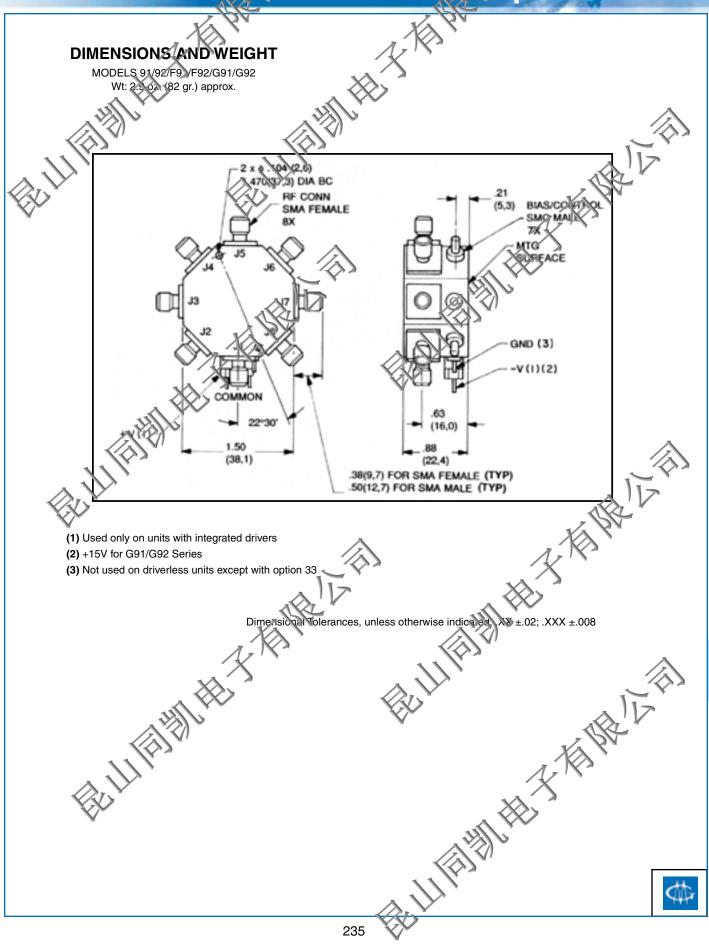
Cond. B (75G, 6 insec)

Vibration MIL-STD 202F, Method 204D, Cond B (.06" double amplitude or 13G, whichever is less)

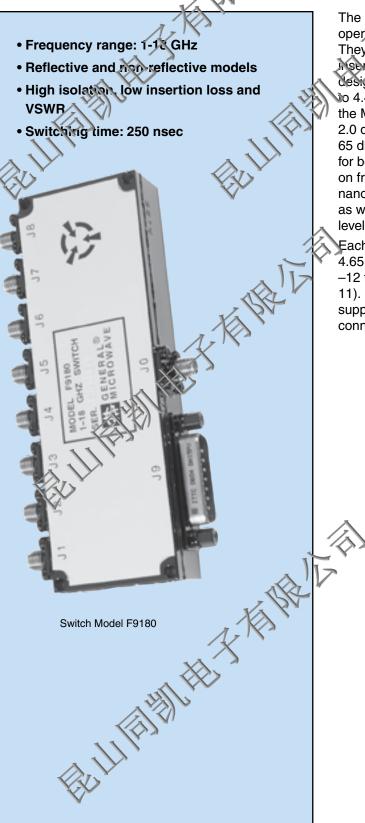
MIL-STD-202F, Method 105C,

Altitude Cond. B (50,000 ft.)

Temp. Cycling MIL-STD-202F, Method 107D, Cond. A, 5 cycles


AVAILABLE OPTIONS

Option No. 3 SMA female bias/control connectors 7 SMA male RF connectors 9 Inverse control logic; logic "0" for port OFF and logic "1" for port ON (Not applicable to Series 91, 92 33 EMI filter solder-type bias/control terminals 411 Internal video filter, common port only 42* Internal video filter, output ports only Internal video ther, all ports 43* Frequency range 0.5 to 18 GHz. See 55 page 15% SMB male bias/control connectors 64A C37** 100 asec switching time G09 Cualanteed to meet Environmental


Description

Series 91 and 92 SATT Switches Specifications

Models F9180 and F9180W Low-Cost Broadband SP8T Switches

The Model F3180 and F9180W SP8T switches operate over a frequency range of 1 to 18 GHz. They are low-cost state-of-the-art, high isolation, low insertion loss units. For the Model F9180, the reflective design, insertion loss varies from 1.5 dB at 1 GHz to 4.4 dB at 18 GHz. The corresponding values for the Model F9180W, the non-reflective design, are 2.0 dB and 4.8 dB, respectively. Isolation varies from 65 dB at 1 GHz to 55 dB at 18 GHz. The VSWF I mit for both designs ranges from 1.7 to 2.0, depending on frequency. These units switch in under 250 nanoseconds. They operate over temperature ranges as wide as -54°C to +110°C and withstand RF power levels as high as 75 watts peak, 1 yatt average.

Each model weighs 8.5 ounces and measures 4.65 x 1.5 x 0.75". They are powered by +5V DC and -12 to -15V DC (standard) or by ±5V DC (Option 11). Individual poxt TC logic control and power supply connections are made by means of a DA15P connector.

展別開開開展表展開

Models F918@and F9180W Specifications

	1,		1, FRI	EQUENCY (G	Hz)	
MODEL ⁽¹⁾ NO.	CMARACTERISTIC	1-2	2-4	4-8	8–12.4	12.4–18
F9180*	Min. Isolation (dB) Max. Insertion Loss (dB) Max. VSWR (ON)	1.5 1.7	65 2.0 1.7	65 2.4 2.0	65 3.2 2.0	60
F9180W	Min. Isolation (dP) Max. Insertion Loss (dB) Max. VSWR (ON or OFF)	65 2.0 1.7	65 2.3 1.7	65 3.2 2.0	60 3.5 2.0	55 4.8 2.0

^{*}Special-order product. Consult factory before ordering.

PERFORMANCE CHARACTERIS

Power Handling Capability

Without Performance Degradation F9180: 0.5W cw or peak

F9180W:

Input to any

"OFF" port: 300 mW cw or peak

Input to any

"ON" poxt: 🛴 0.5W cw or peak

Input to common

port...... 0.5W cw or peak

Survival Power

F\$\\ \80: 1W average, 75W peak

(1 µsec max. pulse width)

F9180W:

Input to any

"OFF" port:..... 1W average, 10W peak

(1 µsec max. pulse width)

Input to any

"ON" port: 1W average, 75% Peak

(1 µsec max, cylse width)

Input to common

port:..... 1W average, 75W peak

sec max. pulse width)

(1) Models p. efixed with "W" are non-reflective except a high VSWR will be presented at the common port if all other ports are OFF.

Switching Time

ON Time (...) 250 nsec max. OFF Time 250 nsec max.

Power Supply

Requirements......+5V ±5% @ 100 mA

-12 to -15V @ 50 mA

CONTROL CHARACTERISTICS

CONTROL LOGIC

Logic "0" (-0.3 to +0.8V) for port ON Logic "1" (+2.0 to +5.0V) for port OFF

CONTROL INPUT IMPEDANCE 0.5 mA sink current, max.

Models F9180 and F9180W Specifications

OPTION (G09) ENVIRONMENTAL RATINGS

Temperature Range

Operating -54°C to +110°C Non-Operating 65°C to +125°C

HumidityMiL-STD-202F, Method 103B. Cond. B (96 hrs. at 95%)

Shock...... MIL-STD-202F, Method 2/35 Cond. B (75G, 6 msec)

> or 15G, whiche (e) is less)MIL-STD-202F, Method 105C,

Cond. B (50,000 ft.) **Temp. Cycling** MIL-STD-202F, Method 107D.

Cond. A, 5 cycles

*See Video Filter Options on page 157

J5 CONTROL

N/C

N/C

N/C STD Unit: -12v to -15

ACCESSORIES FURNISHED

Mating power/logic connector

MAILABLE OPTIONS

ption No.	Description
-----------	-------------

7 SMA male RF connectors

9 Inverse control logic; logic "0" for port OFF and logic "1" for port ON

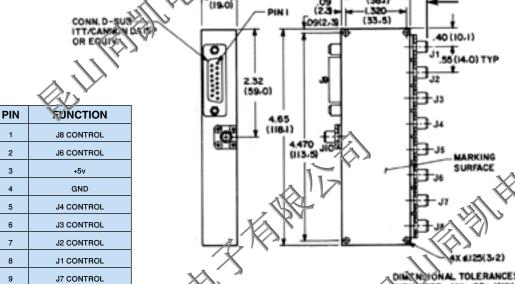
11 ±5V operation

43*

41* Internal video filter, common cout only

42* Internal video filter, output ports only

Internal video filter, all ports


Guaranteed to meet Environmental

Ratings

38(9,7) FOR SMA FEMALE (TYP) 50(12,7) FOR SMA MALE (TYP)

G12 RoHS Complian

DIMENSIONS AND WEIGHT

DINTENSONAL TOLERANCES, UNLESS OTHERWISE HOICATED: XX±.02; XXX±.005

MODELS F9180 and F9180W 8.5 oz. (240 gr.) approx.

Dimensional Tolerances, unless other vise in licated: .XX ±.02; .XXX ±.008

10

12

13

14

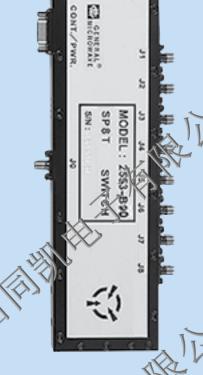
SP8T Phase and Amplitude Watched Switch

MODEL 2553 SERIES

Model 2553 series consists of SP8T-SP12T multi throw switches. In this series, all output ports are inline and the ports are phase and amplitude matched.

The 2553 series consists of the following multi throw switches:

1,1	TYPE	MODEL NO.
	SP8T	2553-B90
	SP10T	2553-239
V	SP12T	2553-B48


The Model 2553 series is equipped with an integrated driver that is powered by +5 and -12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the driver, which is controlled by external logic signals.

展別開展

Phase matched
Amplitude matched
All in-line output ports
Non-reflective

SPECIAL ORDER PRODUCT

SPECIAL ORDER PRO

Switch Model 2553-B99

Model 2553-B90 SP&T Switch **Specifications**

TENFORMANCE SPECIFICATION

	// 7 /
	FREQUENCY RANGE (GHz)
CHARACTERISTIC	1.0
	to 18.0
Min. Isolation (dB)	55
Max. Insertion Loss (aB)	5.2
Max. VSWR one port ON	2.1:1
Max. VSWR OFF	2.2:1
/	

Amplitude Matching

(between any two output ports) .

Phase Matching

(between any two output ports)........ 30° max.

Switching Time

..700 i sec max. ON Time..... OFF Time..... nsec max.

Power Handling Capability

Without Performance

Degradation.........600 mW cw or peak

Survival Rower 1.5W cw

Power Supply Requirements

+5V ±5%, 350 mA max -12V ±5%, 100 mA max

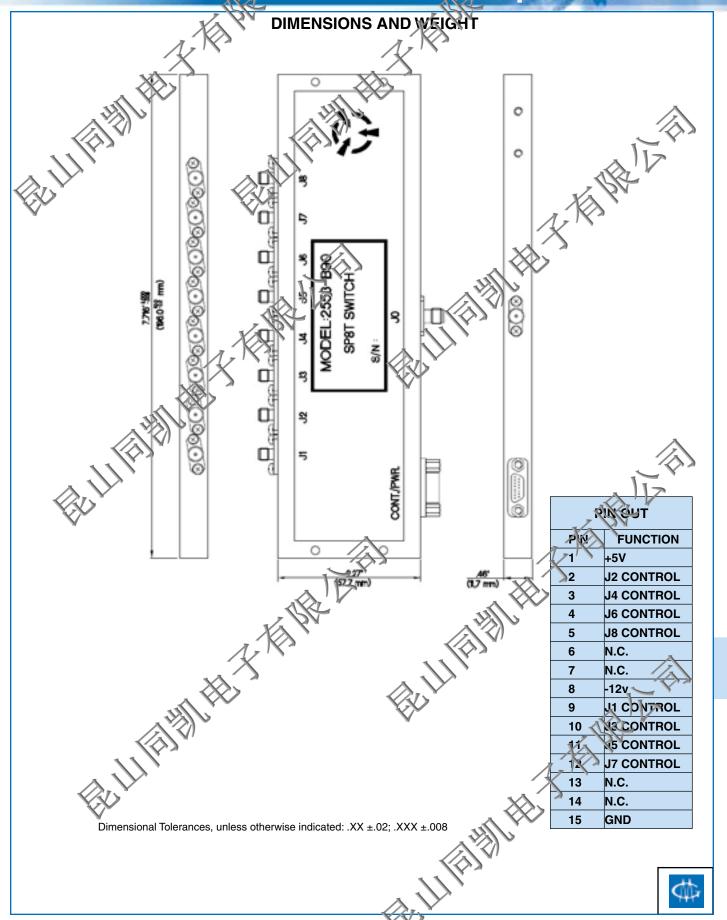
Control Characteristics

Control Input

Impedance Schottky TTL, two unit load (A unit load is 2 m) sink current and 50 µA source

current.)

Control logicLogic "0" (-0.3 to +0.8V) for "ON" state Logic "1" (+2.0 to


+5.00) for "OFF" state.

Operating Temperature0°C to +70°C Storage Temperature-20°C to +70°C

Option No. Description **RoHS Compliant**

Model 2553-B90 SP8T Switch Specifications

Model IA-2470-XO Low Profile Absorptive SP9T Switch

- All in-line output ports
- Non-reflective
- Hermetically Sealed
- Low Proffie

SPECIAL ORDER PRODUCTATION OF THE SPECIAL ORDER PRODUCTATION OR THE SPECIAL ORDER PRODUCTATION OF THE SPECIAL ORDER PRODUCTATION OR THE SPECIAL OR THE

MODEL 14-2470 SERIES

Model IA-2470-XO SP9T switch, is part of our product ince of Low Profile, slim hermetically sealed switches.

The Model IA-2470 series is equipped with an integrated driver that is powered by +5 and -12 voit supplies. The proper currents required to switch the ports ON or OFF are provided by the driver, which is controlled by external logic signals.

根加州和

Model IA-2470-XQ SP9T Switch Specifications

PERFORMANCE SPECIFICATIONS

,		FREQUENCY RANGE (GHz)		
	CHARACTERSTIC	8.0 to 12.0		
	Min. Isolation (dB)	70		
	Max. Insection Loss (dB)	4.0	XX Y	
	Max. VSWR one port ON	2.0:1	1:10	
	Max. VSWR OFF	2.0:1		
		HILL	X /	
	OPTION (G09) ENVIRONMENTAL RATINGS			

Switching Time

展加斯撒

ON Time......25 nsec max **OFF Time**......25 nsec max

Switching Rate......1 MHz max.

Power Handling Capability

Without Performance

Degradation. 100 mW cw or peak

Survival Power @25°C 1W cw

Power Supply Requirements

+5V ±2%, 250 mA max -12V ±2%, 110 mA max

Control Characteristics

TTL Control.

"0" = Insertion Loss, "1" = Isolation

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temporature

Range.....-54°C to +85°C

Non-Operating Temperature

Range –55°C to +125°C

HumidityMIL-STD-202F, Method 103B,

Cond. (96 hrs. at 95%)

Shock......MIL-STD-202F, Method 213B Cond. C (100G/ 6 msec)

Vibration MIL-STD-202F, Method 204D,

Cond. G (30g PEAK)

Altitude MIL-STD-202F, Method 105C, Cond.

C (70,000 ft.)

Temp. Shock......MIL-STD-202F, Method 107D,

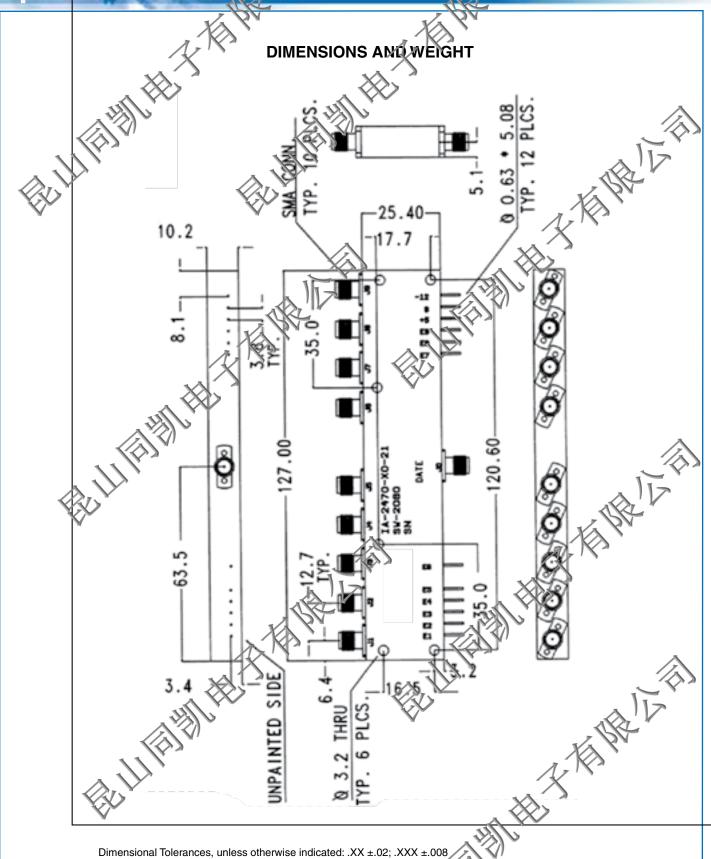
Cond. A, (5 cycles) -55°C to

+125°C/

\$10,202F, Method 112C,

MIL-STD 202F, Method Salt Spray

101D+EST., Cond. B


OPTIONS

The switch can be supplied with various options please consult us for more details.

- 1. Other Frequency Bands
- 2. Reflective
- 3. Different Outline
- 4. Video Leakage Requirements
- 5. Option G09 Guaranteed to meet Environmental Ratings

Model IA-2470-XO SE9T Switch Specifications

2553 Series Model 2553-B39 SP10T Phase and Amplitude Matched Switch

MODEL 2553 SERIES

Model 2553 series consists of SP8T-SP12T multi throw switches. In this series, all output ports are inline and the ports are phase and amplitude matched.

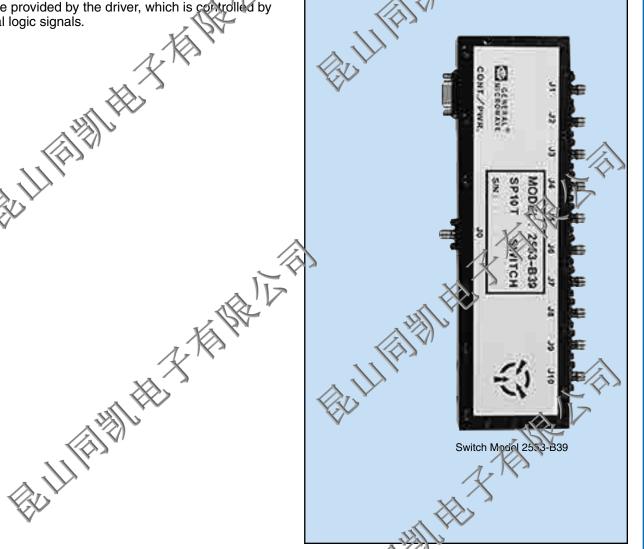
The 2553 series consists of the following multi throw switches:

11	TYPE	MODEL NO.	-
1))	SP8T	2553-B90	
ン"	SP10T	2553-539	
	SP12T	2553-B48	

The Model 2553 series is equipped with an integrated driver that is powered by +5 and -12 volt supplies.

The proper currents required to switch the ports ON or OFF are provided by the driver, which is controlled by 展別開開開 external logic signals.

Frequency range: 6 to 18 GHz


Phase matched

Amplitude matched

All in-line output ports

Non-reflective

SPECIAL ORDER PRODUCT _CONSULT FACTORY BEFORE ORDERING

Model 2553-B39 SPAT Switch Specifications 🚕

PERIORMANCE SPECIFICATION

/ / / /	7	
FREQUENCY RANGE (GHz)		
6.0 to 12.0	12.0 to 18.0	
70	70	
		1,14
2.2:1	2.2:1	XX
	6.0 to 12.0	6.0 to to 12.0 18.0 70 4.3 5.6 2.0:1 2.0:1

Amplitude Matching

(between any two output ports).

Phase Matching

(between any two output ports)....... 30° max.

Switching Time

ON Time......700 nsec max. OFF Time..................700 nsec max.

Power Handling Capability

Without Performance

Degradation......600 mW cw or peak

Survival Power 1.5W cw

Power Supply Requirements

+5V ±5%. 350 mA max

-12V ±5%, 100 mA max

Control Characteristics

Control Input

ImpedanceSchottky TTL, two unit load is 2 mA sink surent

and 50 µA source current.)

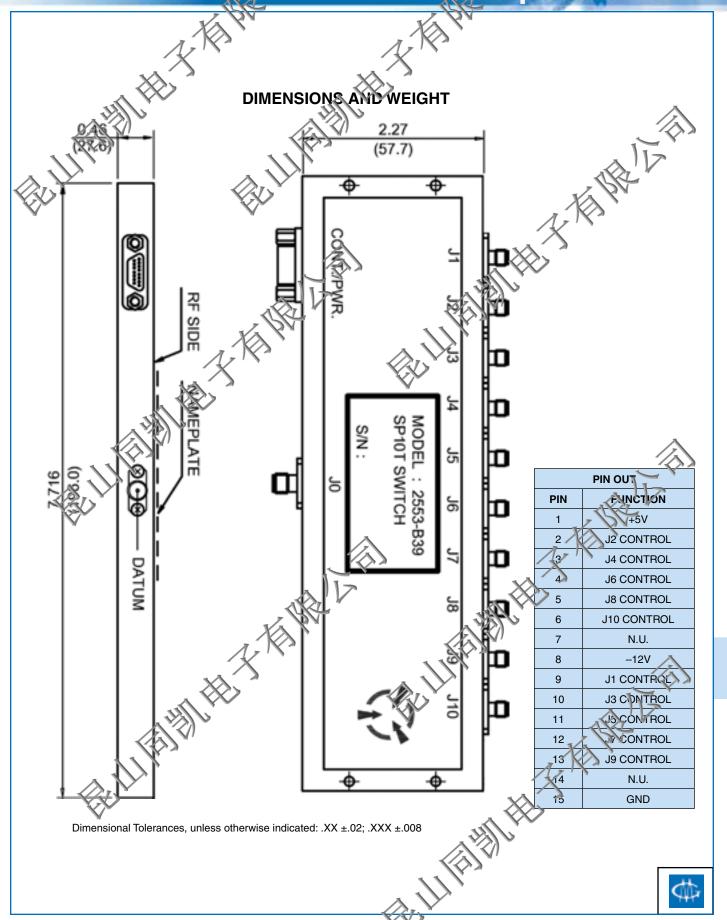
到[原]]] +200 +5.0V) Control logicLogic "0" (-0.3 to +0.8 V) for "ON" state. Logic "1

for "OFF" state.

Operating Temperature......0°C to +70°C

Storage Temperature.....

AVAILABLE OPT


Option No.

G12 Compliant

大杨枫小

Model 2553-B39 \$710T Switch Specifications

Model KA-2060-VV Low Frequency Absorptive SP107 Switch

- Non-reflective
- Internal Decoder
- Hermetically Sealed
- Low Profile

SPECIAL ORDER PRODUCT

SPECIAL ORDER PRODUCT

CONSULT FACTORY BEFORE ORDERING-

MODEL KA-2060 SERIES

Model KA-2060-LK SP10T switch, is part of our product line of Low Profile, slim hermetically sealed switches. It is a Low Frequency SP10T switch.

The Model KA-2060 series is equipped with an integrated driver that is powered by +5 volt scriply. The proper currents required to switch the parts ON or OFF are provided by the driver, which is controlled by external logic signals.

展別開展

Mode KA-2060-VV \$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\exititt{\$\exitit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\e Specifications

PERFORMANCE SPECIFICATIONS

	7 1
	FREQUENCY RANGE (MHz)
CHARACTERISTIC	20.0
	to
(4)	2,000.0
Min Indiana (190)	00
Min. Isolation (db)	60
Max. Insertion Coss (dB)	6.0
Max. VSWR one port ON	1.7:1
Max. VSWR OFF	1.7:1

Switching Time

ON Time......2 msec max OFF Time......2 msec max Switching Rate............0.1 NHz max.

Power Handling Capability

Without Performance

Power Supply Requirements

±2%, 250 mA max

Control Characteristics

4 Bit decoder BCD

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Range-10°C to +85°C

Non-Operating Temperature

Range.......55°C to +125°C

Humidity MIL-STD-202F, Method 103B, Cond.

(96 hrs. at 95%)

Shock...... MIL-STD-202F, Method 213B, Cond. C (100G/6 msec)

Vibration MIL-STD-202F, Method 204D, Cond.

G (30g PEAK)

Altitude MIL-STD-202F, Method 105C, Cond.

C (70,000 ft.)

Temp. Shock...... MIL-STD-202F, Method 107D, Cond.

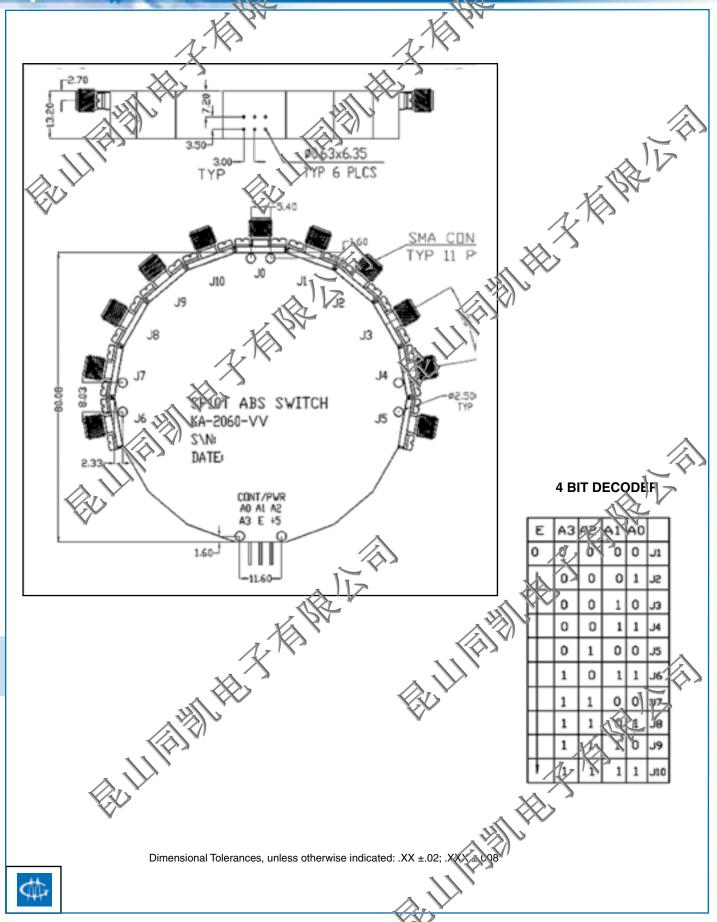
A, (5 cycles) -55°C to +125°C

.MIL-STD 202F, Method 112C,

Cond \$5x10-7

-STD 202F, Method

ID+EST., Cond. B


OPTIONS

The switch can be supplied with various options please consult us for more details.

- 1. Other Frequency Bands
- 2. Reflective
- 3. Different Outline
- 4. Video Leakage Requirements
- 5. Option G09 Guaranteed to meet Environmental Ratings

Model KA-2060-VV \$P10T Switch Specifications

Mode KA-2970-LK Low-Profile Absorptive SP10T Switch

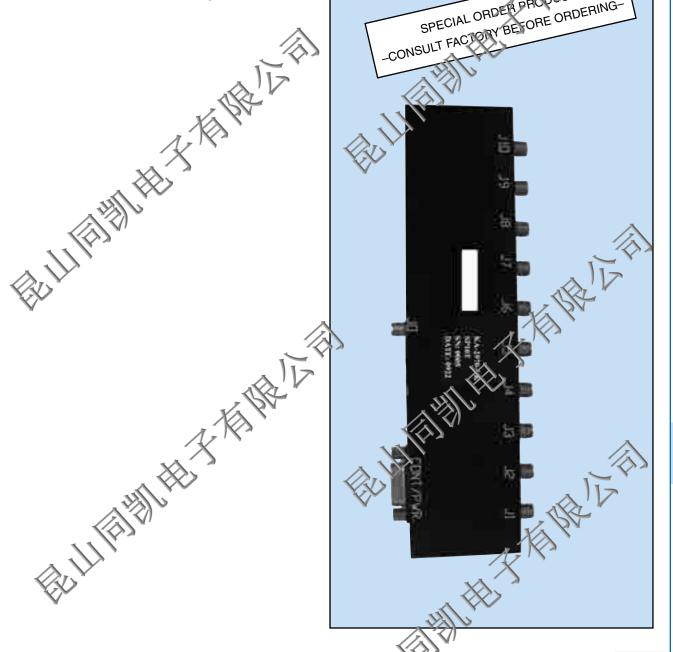
MODEL KA-2970 SERIES

Model KA-2970-LK SR10T switch, is part of our product line of Low Profile, slim hermetically sealed switches.

The Model KA-2970 series is equipped with an integrated driver that is powered by +5 and 12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the driver, which is controlled by external logic signals.

Frequency range: 1 to 18 GHz

All in-line output ports


Non-reflective

Internal Decoder

Hermetically Sealed

Low Profile

SPECIAL ORDER PRODU -CONSULT FACTORY BEFORE ORDERING-

Model KA-2970-LK \$\mathbb{R}10T Switch **Specifications**

FRFORMANCE SPECIFICATION

		/ 7 ' 3	
		FREQUENCY RANGE (GHz)	
1	CHARACTERISTIC	1.0 to	10.0 to
1		10.0	18.0
	Min. Isolation (dB)	70	60
	Max. Insertion (CSS (dB)	4.1	5.6
	Max. VSWR one port ON	2.0:1	2.0:1
	Max. VSWR OFF	2.2:1	2.2:1

Switching Time

ON Time......500 nsec max OFF Time......500 nsec max

Switching Rate.............0.1 MHz max.

Power Handling Capability

Without Performance

mW cw or peak Degradation.....

Survival Power @25°C 1W cw

Power Supply Requirements

+5V ±2%, 300 mA max -12V \$2%, 100 mA max

Control Characteristics

4 Bit decoder BCD

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

....... -40°C to +85°C Range

Non-Operating Temperature

Range......55°C to +125°C

Humidity MIL-STD-202F, Method 103B, Cond.

(96 hrs. at 95%)

Shock...... MIL-STD-202F, Method 213B, Cond.

C (100G/ 6 msec)

Vibration MIL-STD-202F, Method 204D, Cond.

G (30g PEAK)

Altitude MIL-STD-202F, Method 103C/Cond.

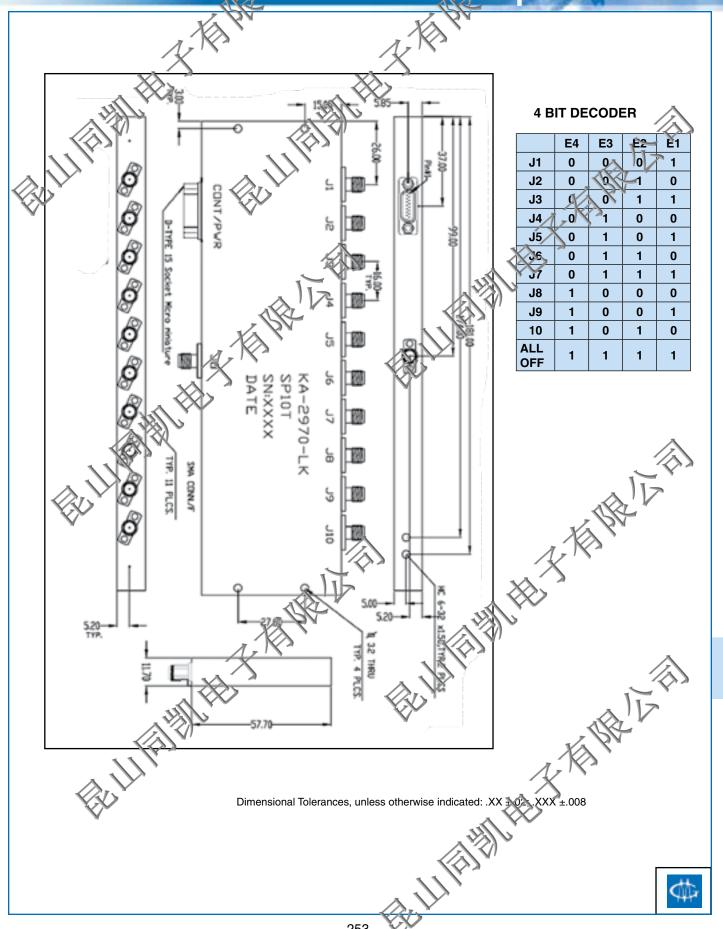
C (70,000 ft.)

Temp. Shock...... MIL-STD-202F, Method 197D, Cond.

A, (5 cycles) -55°C to +125°C

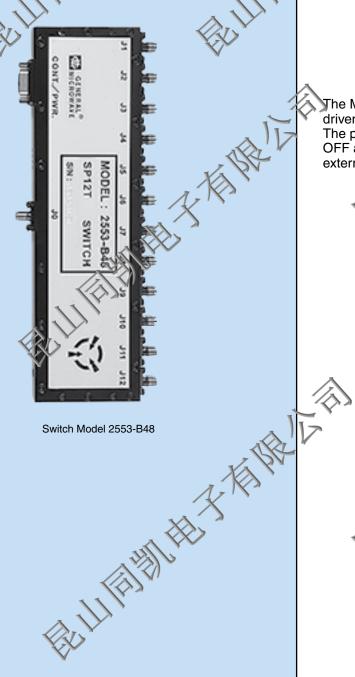
..MIL-STD 202F, Method 112C,

Cond. C 5x 9-3


-SID 202F, Method

OPTIONS

- 1. Other Frequency Bands
- 2. Reflective
- 3. Different Outline
- 4. Video Leakage Requirements
- 5. Option G09 Guaranteed o meet Environmental Ratings



Model KA-2970-LK & 10T Switch Specifications

2553 Series Model 2553-B48 SP12T Phase and Amplitude Matched Switch

- Frequency range: 6 to 18 GHz
- Phase matched
- Amplitude maiched
- All in-line output ports
- Non-renlective

MODEL 2533 SERIES

Model 2553 series consists of SP8T-SP12T multi throw switches. In this series, all output ports are inin and the ports are phase and amplitude matched.

The 2553 series consists of the following multi throw

TYPE	MODEL NO.
SP8T	2553-B90
SP10T	2552-B39
SP12T	2553-B48

The Model 2553 series is equipped with an integrated driver that is powered by +5 and -12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the driver, which is controlled by overnal logic size of external logic signals.

展別開展

是川原規制

Model 2553-B48 SP12T Switch Specifications

PERFORMANCE SPECIFICATIONS

	PERFORMANCE SPEC	FICATIONS	8
			CY RANGE Hz)
THE PARTY OF THE P	CHARACTERISTIC	6.0 to 12.0	12.0 to 18.0
	Min. Isolation (dB)	70	70
	Max. Insertion Loss (dB)	4.3	5.6
V	Max. VSWR one port ON	2.0:1	7.0:1
	Max. VSWR OFF	2.2:1	2.2:1

Amplitude Matching

(between any two output ports)

Phase Matching

(between any two output ports)........... 30° max.

Switching Time

ON Time..... ... 700 risec max. OFF Time.......700 nsec max.

Power Handling Sapability

Without Performance

Degradation.....600 mW cw or peak

Survival Power 1.5W cw

Power Supply Requirements

+5V ±5%, 350 mA max -12V ±5%, 100 mA max

Control Characteristics

Control Input

ImpedanceSchottky TTL, two Vn Cleads. (A unit load is 2 mA sink current

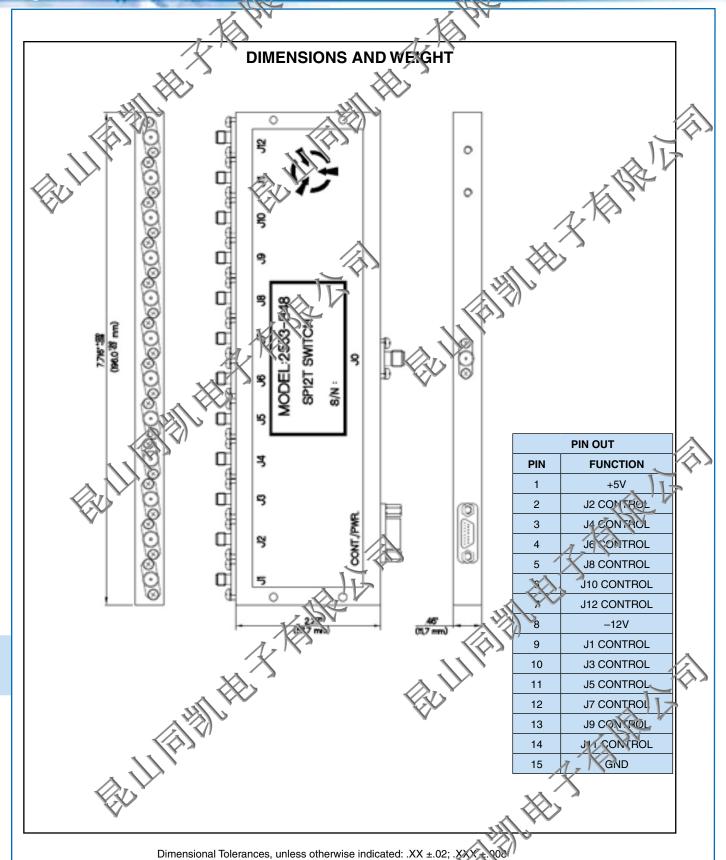
and 50 µA source current.)

Control logicLogic "0" (-0.3 to +0.8V) for "ON" state. Logic "1" (+2.0 to +5.0V)

for "OFF" state.

Operating Temperature....... 0°C to 270°C

Storage Temperature.


AVAILABLE ORTIONS

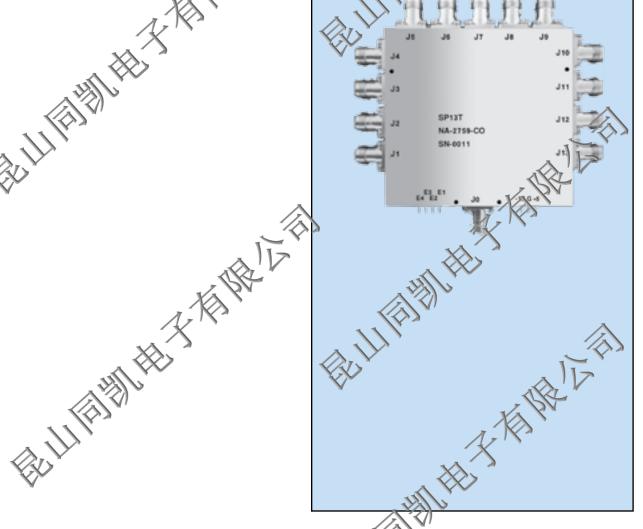
Option No. Description

RoHS Compliant

Model 2553-B48 SPAT Switch Specifications

ModelNA-2750-CO Low Profile Absorptive SP13T Switch

MODEL NA-2750 SERIES


Model NA-2750-CQ SP13T switch is part of our product line of Low Profile, slim hermetically sealed switches.

The Mode NA-2750 series is equipped with an integrated driver that is powered by +5 and 12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the criver, which is controlled by external logic signals.

根据

 Frequency range: 5.3 to 7.5 GHz Non-reflective Internal Decoder Hermetically Sealed Low Profile Decoder

SPECIAL ORDER PRODUC _CONSULT FACTORY BEFORE ORDERING-

Model NA-2750-CO SP13T Switch Specifications

PERIORMANCE SPECIFICATION

	/ 7 1
XX	FREQUENCY RANGE
CHARACTERISTIC	(SH2) 5.3
	/) to 7.5
Min. Isolation (dB)	50
Max. Insertion Loss (CS)	4.5
Max. VSWR one port ON	1.8:1
Max. VSWR OFF	1.8:1

Switching Time

Switching Rate.............0.1 MHz max.

Power Handling Capability

Without Performance

Degradation..... 200 mW cw or peak

Survival Power@25°C 1W cw

Power Supply Requirements

+5V ±2%, 600 mA max

-12V ±2%, 140 mA max

Control Characteristics

4 Bit decoder

Option (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Range20°C to +70°C

Non-Operating enoperature

Range –55°C to +125°C

Humidity MIL-STD-202F, Method 103B, Cond.

(96 hrs. at 95%)

Shock...... MIL-STD-202F, Method 213B, Cond.

C (100G/ 6 msec)

Vibration MIL-STD-202F, Method 204D, Cond.

G (30g PEAK)

Altitude MIL-STD-202F, Method 1050 Dond

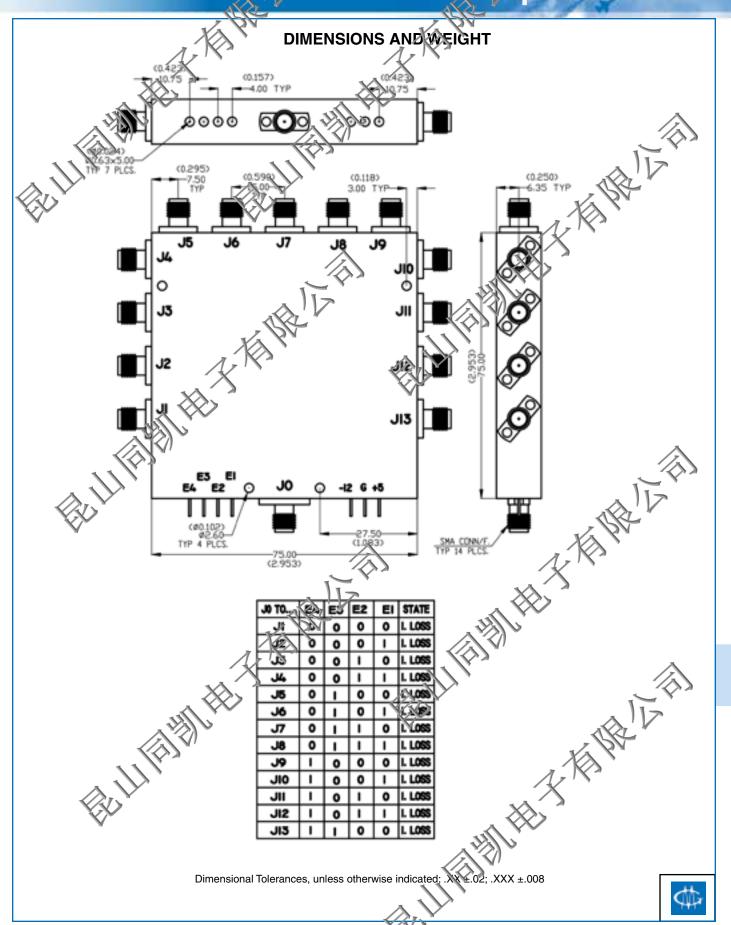
C (70,000 ft.)

A, (5 cycles) -55°C to +125°C

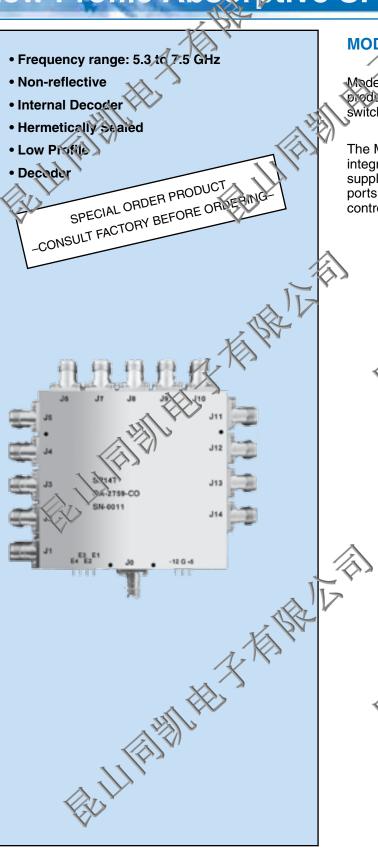
SealMIL-STD 202F, Method 112C,

Cond. C 5x1017

Salt SprayMIL-STD 202F, Method


1010+FS)T., Cond. B

OPTIONS


- 1. Other Frequency Bands
- 2. Reflective
- 3. Different Outline
- 4. Video Leakage Requirements
- 5. Option G09 Guarante ed to meet Environmental Ratings

Model NA-2750-CO SP13T Switch Specifications

Model OA-2750-CO Low Profile Absorptive SP14T Switch

MODEL 2750 SERIES

Model CA-2750-CO SP14T switch is part of our product line of Low Profile, slim hermetically sealed switches.

The Model OA-2750 series is equipped with an integrated driver that is powered by +5 and -12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the driver which is controlled by external logic signals.

限加州和 是川原規則

Mode OA-2750-CO SR14T Switch Specifications

PERFORMANCE SECUFICATIONS

	4	
1	PERFORMANCE SEE	CIFICATIONS
		FREQUENCY RANGE (GHz)
	CHARACTERISTIC	5.3 to 7.5
	Min. Isolation (dB)	50
V.V	Max insertion Loss (dB)	4.5
A	Max. VSWR one port ON	1.8:1
	Max. VSWR OFF	1.8:1

Switching Time

ON Time......100 nsec max OFF Time......100 nsec max

Switching Rate......0.1 MHz max.

Power Handling Capability

Without Performance

200 mW cw or peak Degradation.... Survival Power......@25°C 1W cw

Power Supply Requirements

±2%, 600 mA max ±2%, 140 mA max

Control Characteristics

4 Bit TTL

Option (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Range-20°C to +70°C

Non-Operating Temperature

Range.......55°C to +125°C

HumidityMIL-STD-202F, Method 103B, Cond. (96 hrs. at 95%)

Cond. C (100G/ 6 msec)

Vibration MIL-STD-202F, Method 2049,

Cond. G (30g PEAK)

Altitude MIL-STD-202F, Mahad 105C,

Cond. C (70,000 ft.)

Temp Shock.......MIL-STD-202F, Me hod 107D,

Cond. A, (5 cycles) -55°C to

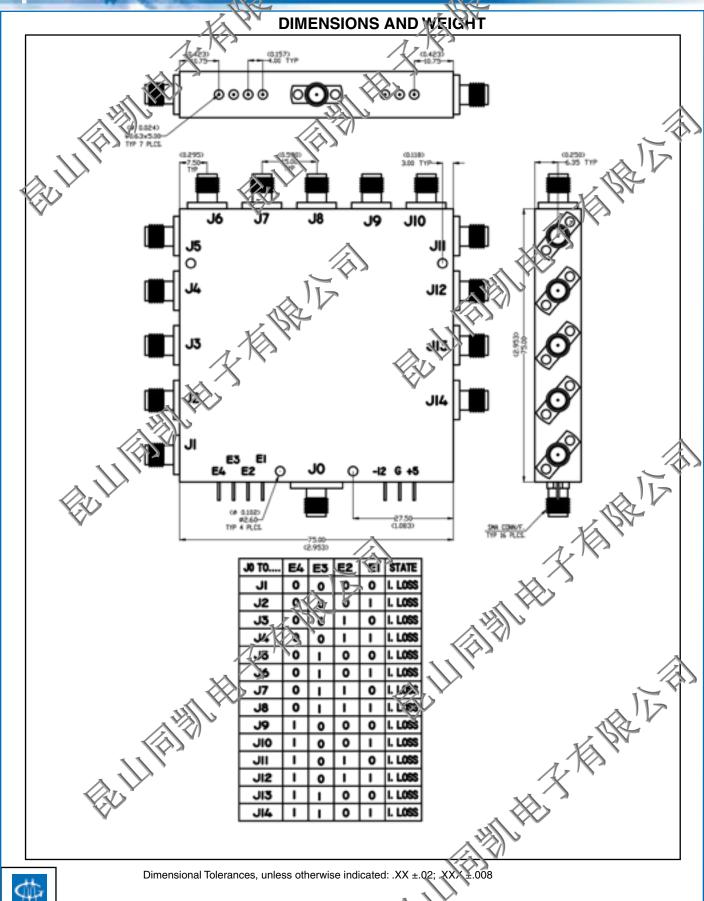
S730 202F, Method 112C,

ond. C 5x10-7

Mil-STD 202F, Method

101D+EST., Cond. B

OPTIONS Salt Spray


The switch can be supplied with various options.

Please consult us for more details.

- 1. Other Frequency Bands
- 2. Reflective
- 3. Different Outline
- 4. Video Leakage Requirements
- 5. Option G09 Guaranteed to meet Environmental Ratings

川原規則

Model OA-2750-CO SP14T Switch Specifications

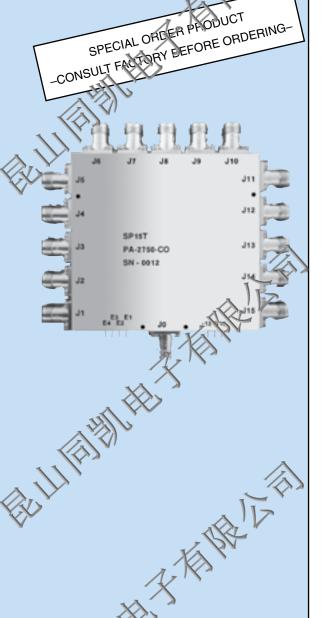
Model PA-2750-CO Low-Profile Absorptive SP15T Switch

MODEL PA-2750 SERIES

Model PA-2750-CO SF15T switch is part of our product line of Law Profile, slim hermetically sealed switches.

The Model PA-2750 series is equipped with an integrated driver that is powered by +5 and -12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the driver, which is controlled by external logic signals.

• Frequency range: 5.3 to 7.5 GHz


Non-reflective

Internal Decoder

Hermetically Sealed

Low Profile

Decoder

Model PA-2750-CO SP15T Switch Specifications

PERIORMANCE SPECIFICATION

	// 7 /
	FREQUENCY RANGE (SH2)
CHARACTERISTIC	5.3 to
(\$\gamma\)	7.5
Min. Isolation (dB)	50
Max. Insertion Loss (dB)	4.5
Max. VSWR one port ON	1.8:1
Max. VSWR OFF	1.8:1

Switching Time

ON Time	100 nsec max
OFF Time	100 nsec max.

Switching Rate......0.1 MHz max.

Power Handling Capability

Without Performance

Power Supply Requirements

+5V ±2%, 600 mA max

-12V ±2% 140 mA max

Control Characteristics

4 Bit decoder

1.8:1 OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Range-20°C to +70°C

Non-Operating Temperature

Range–55°C to +125°C

Humidity......MIL-STD-202F, Method 103B, Cond. (96 hrs. at 95%)

Shock......MIL-STD-202F, Method 213B, Cond. C (100G/ 6 msec)

VibrationMIL-STD-202F, Method 204D,

Cond. G (30g PEAK)

Altitude......MIL-STD-202F, Method 10th

Cond. C (70,000 ft.)

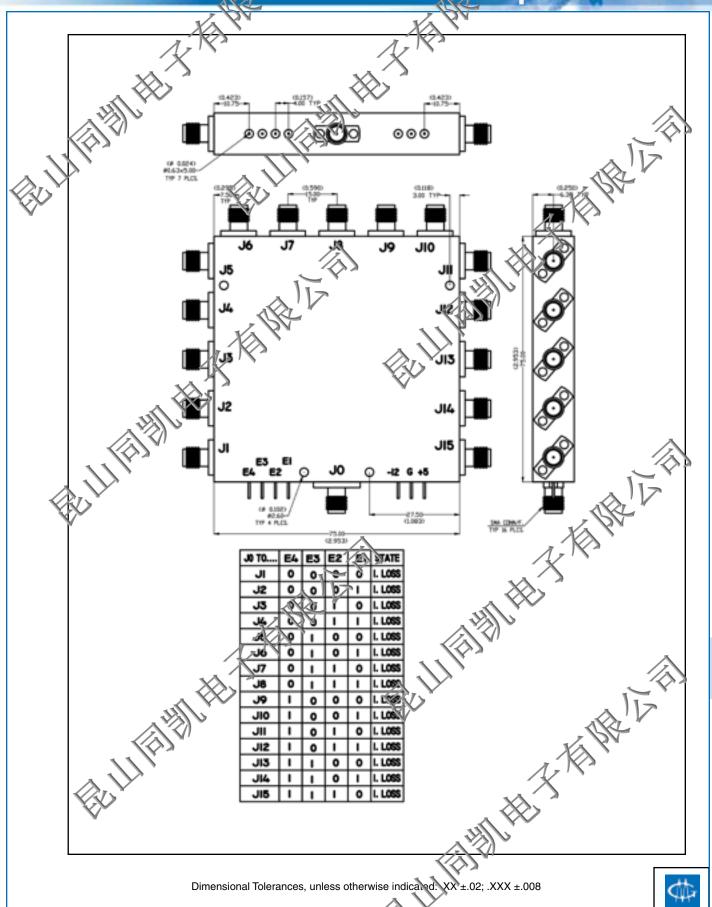
+125°C

Cond. Cox10

Sali SprayMIL-STD 2027, Method

1010 FST., Cond. B

OPTIONS


The switch can be supplied with various options.

Please consult us for more details

- 1. Other Frequency Bands
- 2. Reflective
- 3. Different Outline
- 4. Video Leakage Requirements
- 5. Option G09 Guaranteed to meet Environmental Ratings

Mode PA-2750-CO SP15T Switch Specifications

Dimensional Tolerances, unless otherwise indicated: XX ±.02; .XXX ±.008

Model 1744 SP16T PIN Diode Switch

- Frequency Range: 2-18 GHz
- Non-reflective
- High Isolation, Low insertion Loss and VSWR
- Switching Speed. 500 nsec

SPECIAL ORDER PRODUCT

Switch Model 1744

General Microwave Corporation's SP16T PIN Diode Switch, Model 1744, covers the 2 to 18 GHz frequency band. The switch exhibits a maximum insertion loss of 6.0 dB and an isolation of 60 dB to 14 GHz and 50 dB to 18 GHz. The switching speed is 500 nsec maximum. This compact unit measures 4.5 x 4.0 x 0.75". Power supply voltages are +5V and +15 VDC, and it is controlled by 7-bit TTL binary logic. The switch operates over the temperature range of -40°C to +85°C.

展別開閉 大川原期 拱 子 村 村

SP167 Specifications

PERFORMANCE CHARACTERISTICS

VSWR (ON or OFF)2.0:1 max.

Isolation..... 60 dB min. to 14 GHz

50 dB min. to 18 GHz

Switching Speed 500 nsec max.

Power Handling Capability

Without Performance Degradation

input to any OFF port..... 100 mW cw or peak Input to any ON port...... 1W cw or peak

Input to common port 1W cw or peak

Survival Power

Input to any OFF port 1W average, 10W peal

(1 µsec max. pulse

width)

Input to any ON port...... 1W average, 75W peak

(1 µsec max. vulse

width) 1

Input to common port 1W average, 75W peak

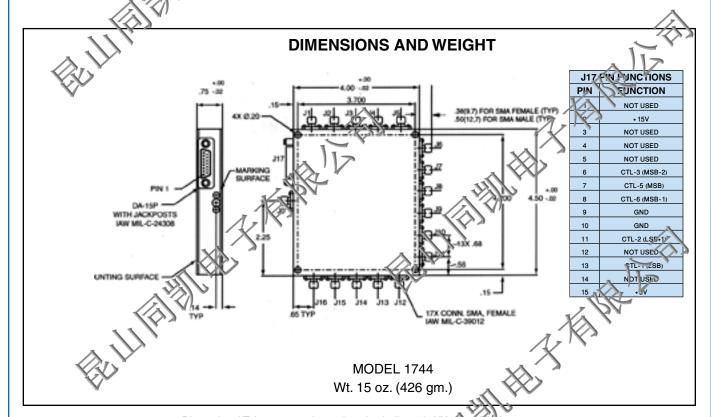
(1 µsec max. pulse

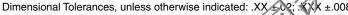
width

Power Supply+5 VDC at 250 mA +15 VDC at 100 mA

Control Input Impedance TTL, two unit load. (A unit load is 0.8 m/

sink current and 40 p4

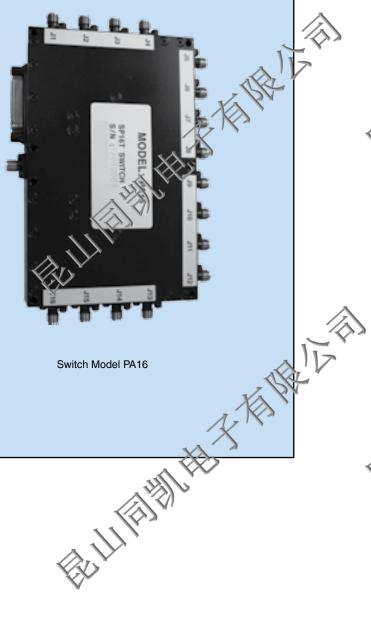

source current)


Control Logic5-bit TTL

(Decoded liput

Connector......DA-15P Molitipin

Operating Temperature 0° to 400°C



Series PA16 SP16T hase and Amblitude Matched Switches

- Phase matched
- Amplitude matched
- Non-reflective

The Series PA16 Non-Reflective SP16T Switches rave been designed for distribution of wide-band RF/ Microwave signals. Applications include EW Simulators and Test Systems. All output ports are Phase and Amplitude matched to further minimize Simulator Sys. calibration and enhance the fidelity of Test Systems

展別開閉 是川原規則

PA16 SP16T Switch Specifications

PERFORMANCE SPECIFICATIONS

	PERFORMANCE SPECI	FICATIONS	
Rellies.	CHARACTERISTIC	MODEI PA1606	L NUMBER
	Min. Frequency Range (GHz)	0.5 to 6.0	1.0 to 18
	Min. Isolation (dB)	65	60
	Max. Insertion Lcsթ (dB)	40	6.5
	Max. VSWR one port ON	2.9:1	2.2:1
	Max. VSWR CFF	2.0:1	2.2:1

Amplitude Matching

(between any two output ports)1.5 dB max.

Phase Watching

(between any two output ports)...... 30° max.

Switching Time

ON Time.....500 nsec max. OFF Time......500 nsec max.

Power Supply Requirements

+5V ±5%, 450 mA max -12V ±5%, 135 mA max

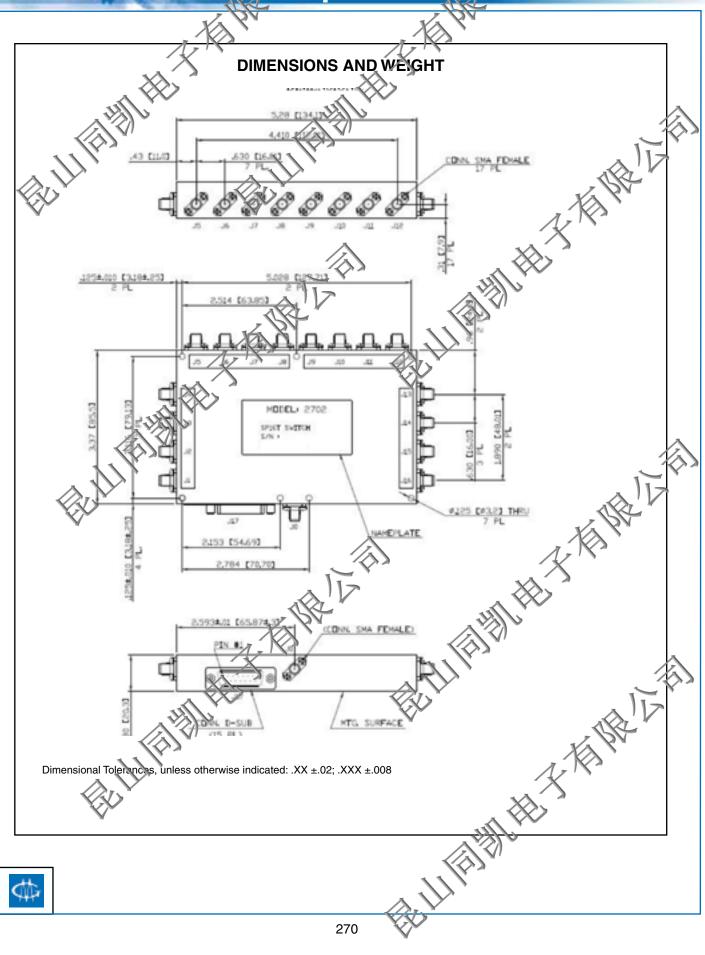
4 Bit TTD Decoded Input **Control Logic**

Operating Temperature ... -20°C to +70°C Storage Temperature.....-20°C to +70°C **Power Handling Capability**

Without Performance Degradation

Input to any "OFF" port: 100 mW cv pr-neak Input to any "ON" port: 1W cw vr peak Input to common port: 1W cw & peak

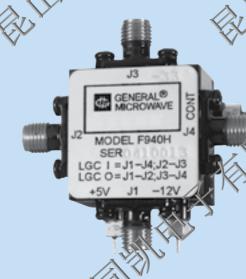
Survival Power


Input to any "OFF" port: 1W average, 10W peak (1 usec max. pulse width) Input to any "CN port: 1W average, 75W peak (1 µsec max. pulse width) Input to common port: 1W average, '5W peak (1 µsec max. pulse width)

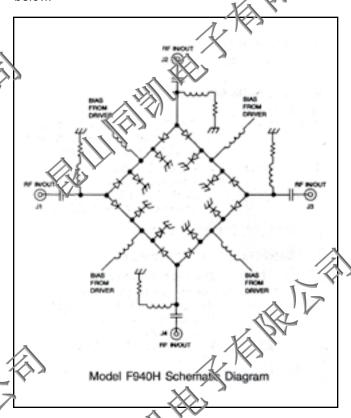
AVAILABLE OPTIONS

Description Option No. RoHS Compliant G12

PA16 SP16T Switch Specifications


PA16 SP16T Switch Specifications

Model F940H Broadband Transfer Switch


- Low VSWR and insertion loss
- Isolation: up to 60 dB
- Small size, light veight

Switch Model F940H

MODEL F940H

Model F940H is a high-performance broadband transfer switch that operates over the full instantaneous bandwidth of 0.5 to 18 GHz with ON and OFF times of 30 nsec. Design features include an integrated circuit assembly of PIN diodes mounted in a microstrip transmission line as well as a resistive bias line that contributes to the broadband low-loss performance. The circuit configuration of the Model F940H is shown below.

The Model F940H is ecuipped with an integrated driver that is powered by +5 and -12 volt supplies. The proper currents required to switch the ports ON or OFF are provided by the driver, which is controlled by external logic signals.

PERFORMANCE CHARACTERISTICS

1 / Long	FREQUENCY (GHz)					
CHARACTERISTIC	0.5	8.0	12.4			
	to	to	to			
	8.0	12.4	180			
Min. Isolation (dB)	60	55	11/150			
Max. Insertion Loss (dB)	2.0	2.5	3.5			
Max. VSWR	1.75	1.75	2.0			

Model F940H Specifications

Switching Time

ON Time......30 nsec max. OFF Time......30 nsec max.

Power Handling Capability

Without Performance

Degradation......500 mW cw or peak

Survival Power1W average, 75W pear (1 µsec max, pulse width)

Power Supply Requirements

+5V ±5%, 60 mA -12V ±5%, 75 mA

Control Characteristics

Control Input

ImpedanceSchottky TTL, two unit loads.

(A unit load is 2 in A sink current and 50 µA source

current.)

Control logicLogic "0" (-0.3 to +0.8V)

connects J1 to J2 and J3 to J4. ogic 1" (+2.0 to +5.0V) connects J1 to J4 and J2 to

//3:

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Bange......-54°C to +110°C

Non-Operating Temperature

Range......–65°C to +125°C

Humidity MIL-STD-202F, Method 1038

Cond. B (96 hrs. at 95%)

Cond. B (75G, 6 v sec)

Vibration MIL-STD-202F, Method 204D, Cond. B (.06" double amplitude

or 15G, whichever is less)

Altitude MV-STD-202F, Method 105C,

Cond. B (50,000 ft.)

Temp. Cycling ML-STD-202F, Method 107D,

Cond. A, 5 cycles

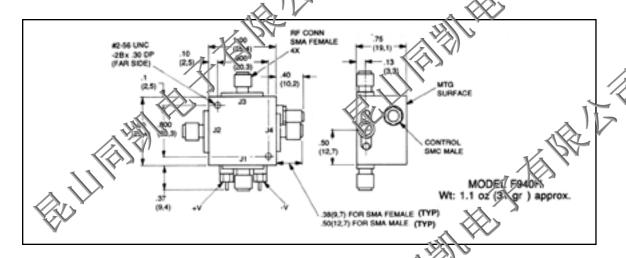
AVAILABLE OPTIONS

Option No.	Description
7	SMA male RF connectors

Inverse control logic; logic "0" connects J1 to J4 and J2 to J3, and logic "1" connects J1 to J2 and J3 to J4.

33 EMI filter solder-type control terminal

48 +5V, -15V operation


64A SMB male control connector

G09 Guaranteed to meet Environmental

Ratings

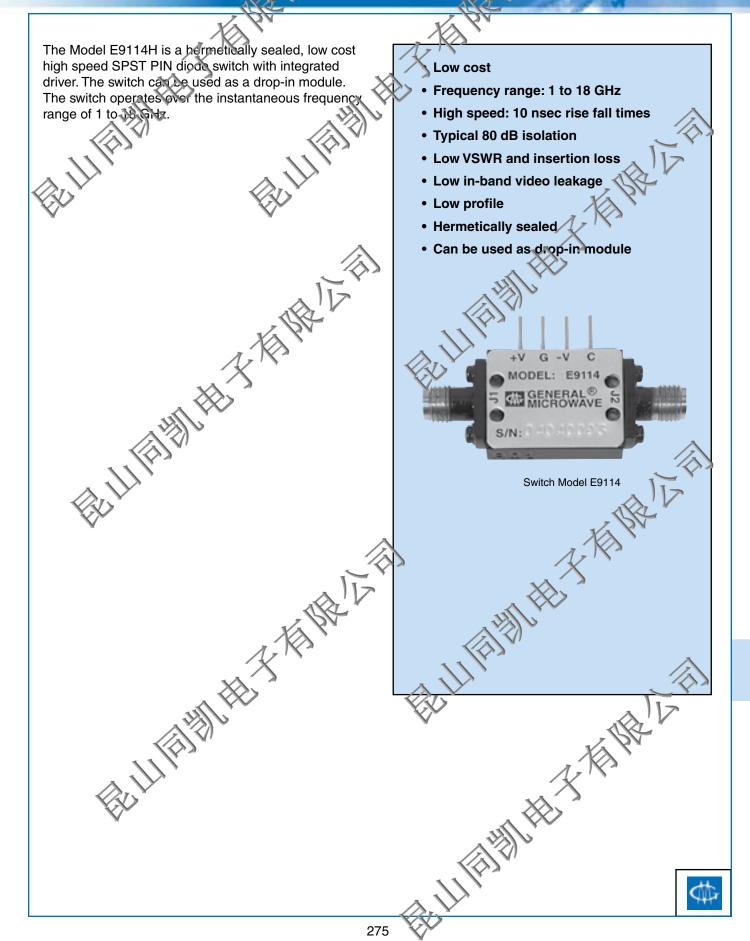
G12 RoHS Compliant

DIMENSIONS AND WEIGHT

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; XXX ±.008

Hermetically Sealed ow Profile Switches Selection Guide

KRATOS General Microwave is offering a broad range of Hermetically Sealed, Low Profile switches. These are high speed, wide frequency range, high performance switches with low insertion loss and high isolation. They vary from SPST through SP61 higher Multi-Throw switches are available as specials. The standard thickness of these switches is typically about 0.23" (6.0mm). In some cases, we can provide switches of 0.19" (4.9 mm) too. These switches are meeting sever environmental requirements such as airborne and naval applications.


In addition to the standard configuration as specified in this catalog, they can be supplied with various options. such as: Ren'ective or Non-Reflective (absorotive), low video leakage, various Power Supply Voltages, Over-Voltage Protection and in Drop-In configuration.

HERMETICALLY SEALED SWITCHES

TREQUENCY RANGE (GHz)	W							4				1,1
## SPDT SWITCHES 1	0.1	0.5						18	20		PAGE	COMMENTS
## SPDT SWITCHES 1									SIPS	T SWITCHES	THE .	S
1 18 E9120H#17 278 SP3T SWITCHES 1 18 E9130H/HT 282 SP4T SWITCHES 1 18 E9140H/HT 286 SP5T SWITCHES 18 ER-2260-UK 290 SP6T SWITCHES 0.5 18 FP32S0-UK 203 SP9T SWITCHES 8 12 IA-2470-XO 242 SP3T SWITCHES 5.3 7.5 NA-2750-CO 259 SP14T SWITCHES 5.3 7.5 PA-2750-CO 263			1 -					_/	EL		875	
SP3T SWITCHES 1 18 E9130H/HT 282 SP4T SWITCHES 1 18 E9140H/HT 286 SP5T SWITCHES 18 ER-2260-UK 290 SP6T SWITCHES 0.5 18 FR-2280-UK 203 SP9T SWITCHES 8 12 IA-2470-XO 242 SR 3T SWITCHES 5.3 7.5 NA-2750-CO 257 SP14T SWITCHES 5.3 7.5 PA-2750-CO 263							λ		SPI	OT SWITCHES	11,	
1			1 —			,	1	1	8	E9120H/H7	278	
SP4T SWITCHES 1						X			SP	3T SWITCHES		
1 18 E9140H/HT 286 SP5T SWITCHES 18 ER-2260-UK 290 SP6T SWITCHES 0.5 18 FR-2280-UK 203 SP9T SWITCHES 8 12 IA-2470-XO 242 SP14T SWITCHES 5.3 7.5 NA-2750-CO 257 SP14T SWITCHES 5.3 7.5 OA-2750-CC 608 SP15T SWITCHES			1 —	17	<u>l</u>	XX		1	8	E9130H/HT	282	
SP5T SWITCHES 18				X	$\langle \rangle \rangle$	0			SP	4T SWITCHES		
SP6T SWITCHES SP9T SWITCHES SP14T SWITCHES SP14T SWITCHES SP14T SWITCHES SP15T SWITCH		4	1	$\langle \rangle \rangle$)			1	8	E9140H/HT	286	
SP6T SWITCHES 18 FB-22%0-UK 203 SP9T SWITCHES 8 12 IA-2470-XO 242 SR 3T SWITCHES 5.3 7.5 NA-2750-CO 257 SP14T SWITCHES 5.3 7.5 OA-2750-CO 608 SP15T SWITCHES SP15T SWITCHES 5.2 7.5 PA-2750-CO 263		<u> </u>	$\langle \rangle \rangle$,					SP	5T SWITCHES		
18 FR-2230-UK 203 SP9T SWITCHES 8 12 IA-2470-XO 242 SR 3T SWITCHES 5.3 7.5 NA-2750-CO 257 SP14T SWITCHES 5.3 7.5 OA-2750-CO 608 SP15T SWITCHES	*	6.3						18	В	ER-2260-UK	290	THE W
SP9T SWITCHES 8 —— 12		- W							SP			KA,
8 — 12 IA-2470-XO 242 SP ST SWITCHES 5.3 — 7.5 NA-2750-CO 257 SP14T SWITCHES 5.3 — 7.5 OA-2750-CO 608 SP15T SWITCHES 6.2 — 7.5 PA-2750-CO 263		0.5						18			203	1,14"
SPI3T SWITCHES 5.3 7.5 NA-2750-CO 257 SP14T SWITCHES 5.3 7.5 OA-2750-CO 608 SP15T SWITCHES 5.2 7.5 PA-2750-CO 263									SPS	17		
5.3 — 7.5 NA-2750-CO 257 SP14T SWITCHES 5.3 — 7.5 OA-2750-CC 608 SP15T SWITCHES 6.2 — 7.5 PA-2750-CO 263						8	3 ——	12	-3		242	
SP14T SWITCHES 5.3 7.5 OA-2750 CC 608 SP15T SWITCHES 6.2 7.5 PA-2750-CO 263								X	SM			
5.3 OA-2750 CC 608 SP15T SWITCHES 6.3 7.5 PA-2750-CO 263					5.3		7.5	< 1	000		257	
SP15T SWITCHES PA-2750-CO 263						4	$\stackrel{\checkmark}{\Longrightarrow}$	2	SP1		,	1
7.5 PA-2750-CO 263					5.3	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.01	3/2/	608	
1-1				-</td <td></td> <td><!--</td--><td></td><td></td><td>SP1</td><td>I</td><td>000</td><td></td></td>		</td <td></td> <td></td> <td>SP1</td> <td>I</td> <td>000</td> <td></td>			SP1	I	000	
274 ET			_	1	5.3		1 .5					1-
274 ET		4	31	\mathcal{Y}								X
274		Y	\$\trianslands								~ ~	
274											THE STATE OF THE S	
274	_									,		
274										11.	7/	
274												
										274		

Model **E9114H** Hermetically Sealed Low Profile SPST Switch

Model E9114H SPST Specifications

PERFORMANCE CHARACTERISTICS

	FREQUENCY (GHz)						
CHARACTERISTIC	1–2	2-1	4-8	8–12.4	12.4–18		
Min. Isolation (dB)	60		80	80	80		
Max.Insertion Loss (dB)	0.9	0.9	1.2	1.6	2.5		
SWR (ON STATE)	(2)	1.4	1.75	1.75	2.0		

Power Supply Requirements									
	Standar	d Switch	WithO	nion 11	With Option 62				
MODEL NO.	+5V ±5%	-12V ±5%	+5 / ±5%	−5V ±5%	+5V ±5%	-15V ±5%			
E9114H	60 mA max	40 mA max	60 mA max	40 mA max	60 max	40 mA max			

Switching Characteristics

Power Handling Capability

Without Performance

Degradation........... 200 mW cw or peak Survival Power.......... 2W average, 75W peak

(1 µsec max. pulse width)

Control Characteristics

Control Input

Impedance...... TTL, 1-unit load

Control Logic

Logic "0"..... (max. VIL = 0.8V) for switch

ON

Logic "1"..... (min. VIH = 2V for switch OFF

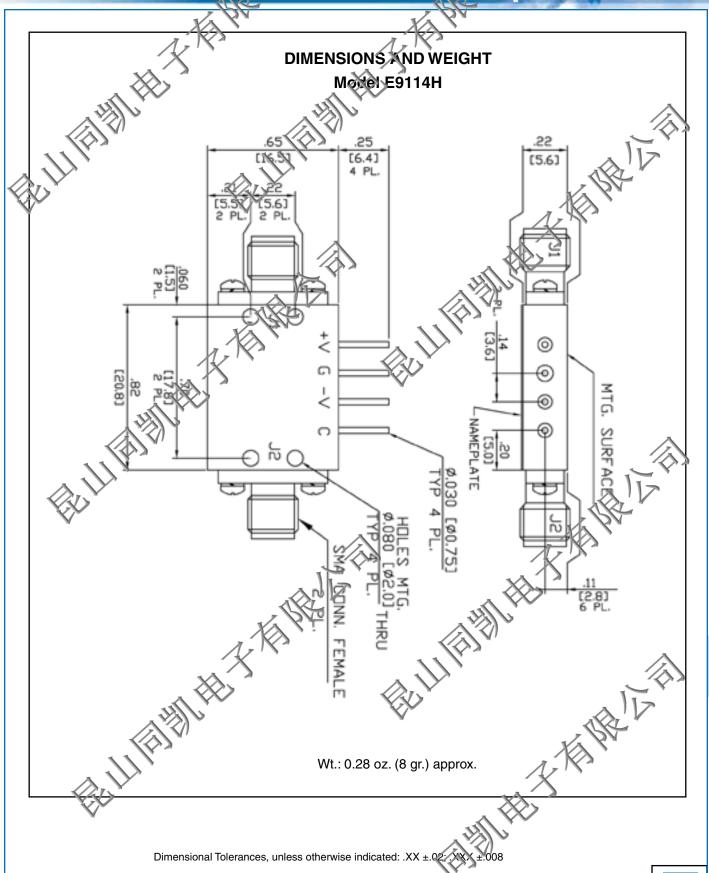
AVAILABLE OPTIONS

(Consult factory before ordering)

Option No.	Description
7	SMA male RF connectors all ports
9	Inverse control logic; logic "1" for switch Ol and logic "0" for switch OFF
11	+5V, -5V operation
43	Internal video filter, all ports
49	High Reliability Screening (see page 394)

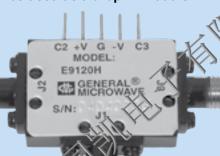
Guaranteed to meet Environmental Ratings

*See Video Filter Options on page 167


+5, -15V operation

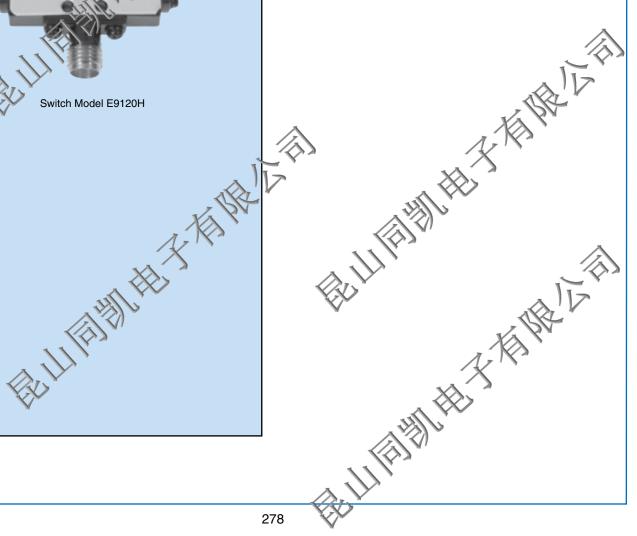
OPTION (G09) ENVIRONMENTAL RATING

- 1 Operating Temperature Range -540C to +950C.
- 2 Humidity MIL-STD-202G, Method 103B, Condition B (96 hours at 95%).
- 3 Shock MIL-STD-202G, Method 213B, Condition A (50G, 11 msec).
- 4 Vibration MIL-STD-202G, Method 204D, Condition B (0.06" double appointed or 15G,
- 5 Altitude MIL-STD-202G, Method 105C, Condition B (50,000 ft.).
- 6 Temperature Cycling MIL-STD-202F, Method 107D, Condition A (5 cycles.).



SPST Specifications

Models E9120H and E9120HT Hereically Sealed Low Profile SPDT


- Low cost
- Frequency range: 1 to 18 GHz
- High speed: 10 nsec rise fall times
- Isolation 50 dB
- Reflective and non-reflective models
- Now VSWR and insertion loss
- Low in-band video leakage
- · Hermetically sealed
- Low profile
- Can be used as a drop-in module

Switch Model E9120H

The Model E9120H is a hermetically sealed, low cost high speed, SPDT PIN diode switch with integrated duver. The switch can be used as a drop-in module. The switch operates over the instantaneous frequency range of 1 to 18 GHz.

sion of The Model E9120HT is a non-reflective version of this switch.

Models E9120H and E9120HT SPRT Specifications

PERFORMANCE CHARACTERISTICS

		FREQUENCY (GHz)			
MODET	CHARACTERISTIC	1-4	4-8	8-12.4	12.4–18
E9120H	Min. Isolation (oS) Max. Insertion Loss (dB) Max. VSWR (ON)	60 1.1 1.75	60 1.4 1.75	60 2.0 1.75	50 2 5 2.0
E9120HT	Min. Isolation (dB) Max. Insertion Loss (dB) Max. VSWR Port ON Max. VSWR Port OFF	60 1.3 1.75 1.75	60 1.7 1.9 2.0	60 2,5 2.0 2.2	50 3.0 2.0 2.3

Power Supply Requirements						
Standaro Switch With Option 11 With Option 62				otion 62		
MODEL NO.	+5V_±5°	−12V ±5%	+5V ±5%	–5V ±5%	+5V ±5%	-15V ±5%
E9120H	95 m. max	70 mA max	95 m. max	70 mA max	95 mA max	70 mA max
E9120HT	95 mA max	70 mA max	95 mA max	70 mA max	95 mA max	70 mA max

Rise Time	10 nsec max.
Fall Time	10 nsec max.
ON Time	25 nsec. max
OFF Time	20 nsec max.
Max. Repetition rate	20 MHz.

Power Handling Capability

Without Performance Degradation

Input to OFF port: 100 mW cw or peak Input to ON port: 200 mW cw or peak Input to COMMON corn 200 mW cw or peak

Survival Power:

Reflective Switches........... 1W average, 75W peak (1 µsec max pulse width)

Non-Reflective Switches

Input to ON port:..... 1W average, 75W peak (1 µsec max. pulse width)

Input to COMMON

port: 1W average, 75W peak (1 µsec max. pulse width)

Control Characteristics

Control Input hopedance.....TTL, 1-unit load

Control Logic

Logic "0" (max. VIL \ 0.8V) for

switch QN

Logic "1" (min. VIH = 2V) for switch

Models E9120H and 59120HT SPDT Specifications

OPTION (G09) ENVIRONMENTAL RATING

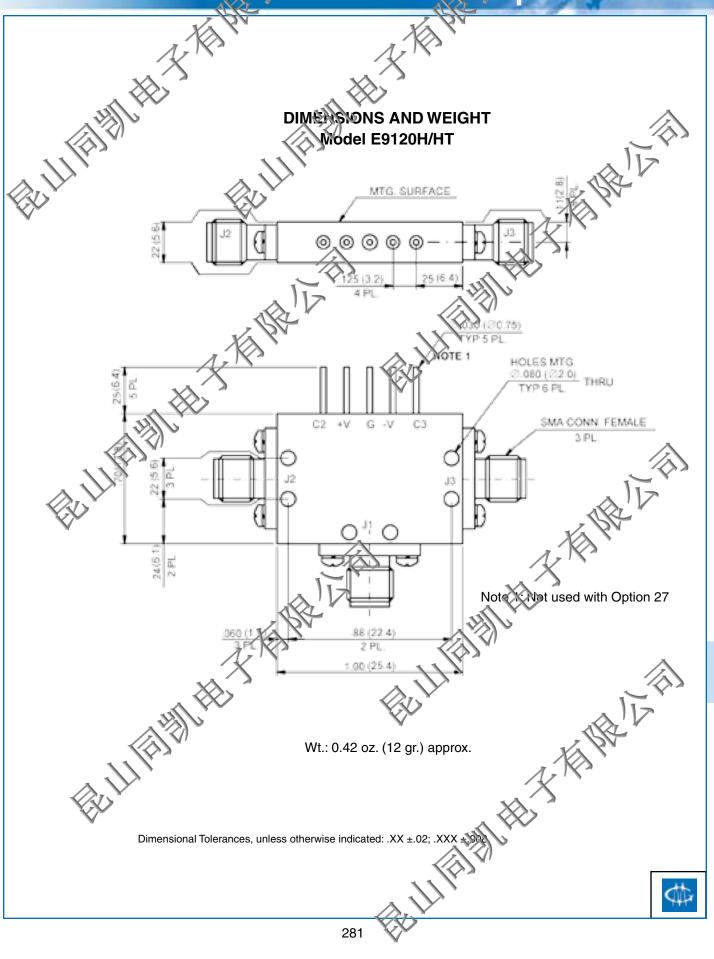
- Operating Temperature Range -54°C to +95°C
- Humidity MIL-STD-202G, Method 103B, Condition B (96 hours at 95%). 2
- 3

AVAILABLE OPTIONS

(Consult factory before ordering)

Description SMA male RF connectors all pents Inverse control logic; logic "1" to switch ON and logic "0" for switch OFF +5V, -5V operation Single-port toggle; logic; Logic "0" connects J1 to J2 iternal video files, all ports igh Reliability Screening (see per i, -15V operation stranteed to " Option No. 7 9 11 27

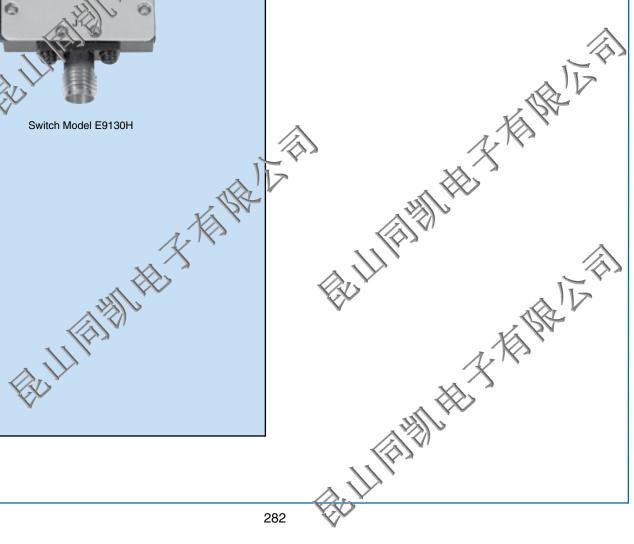
- 43*
- 49
- 62
- Guaranteed to meet Environmental Ratings **G09**


限加州和 *See Video Filter Options on page 167

最加加斯斯

最別限。

Models E9120H and E9120HT SPDT Specifications


Models E9130H and E9130HT Hermetically Sealed Low Profile SP3T Switches

- Low cost
- Frequency range: 10 18 GHz
- High Speed: 10 nsec rise fall times
- Reflective and non-reflective models
- High Penormance
- Improve in-band video leakage
- Hermetically sealed
- Yow profile
- Drop-in

The Mcdel E9130H is a hermetically sealed, low cost high speed, SP3T PIN diode switch with integrated driver. The switch can be used as a drop-in module. The switch operates over the instantaneous frequency lange of 1 to 18 GHz.

The Model E9130HT is a non-reflective version of this switch.

Models E9130H and E9130HT Specifications

PERFORMANCE CHARACTERISTICS

			FREQUE	NCY (GHz)	
MODEL NO	CHARACTERISTIC	1-4	4-8	8–12.4	12.4–18
E9130H	Min. Isolation (dB) Max. Insertion Loss (dB) VSWR (ON)	60 1.2 1.75	60 1.5 1.75	60 2.0 1.75	50 2.6
E9130HT	Min. Isolation (NB) Max. Insertion Loss (dB) Max. VSWR Port On Max. VSWR Port Off	60 1.6 1.75 1.75	60 1.8 1.9 2.0	60 2.5 2.0	50 3.3 2.0 2.3

Power Supply Requirements						
	Standard Switch With Option 11 With Option 62				otion 62	
MODEL NO.	+5V ±5%	12V ±5%	+5V ±5%	-5/±5%	+5V ±5%	-15V ±5%
E9130H	110 mA max	65 mA max	110 mA max	65 mA max	110 mA max	65 mA max
E9130HT	110 nA max	65 mA max	110 mA max	65 mA max	110 mA max	65 mA max

Rise (in e)	
Fall Time	10 nsec max.
ON Time	25 nsec. max
OFF Time	20 nsec max.
Max Repetition rate	20 MHz

Power Handling Capability

Without Performance Degradation

Reflective Switches	200 mW cw or peak
---------------------	-------------------

Non-Reflective Switches

Input to OFF po	rt:100	n W	cw (or peak
Input to ON por	ort:100 t:200	mW	cw (or peak
Input to COMM	ON port 200	mW	cw (or peak

Survival Power:

Reflective Switches	1W average 75W peak
	(1 usec max pulse width

Non-Reflective Switches

Input to OFF port:.......... 1W average, 10W peak (1 usec max. pulse width)

(1 µsec max. pulse width)

Input to COMMON port: 1W averag

Control Characteristics

Control Input		-
Impodance	TTL,	1-unit load
Control Logic	,	
Control Logic		AXL

Logic "0" (max VIL ≥ 0.8V) for switch QN

Logic "1"......prin. VIH = 2V) for switch

Models E9130H and €9130HT SP3T Specifications

AVAILABLE OPTIONS

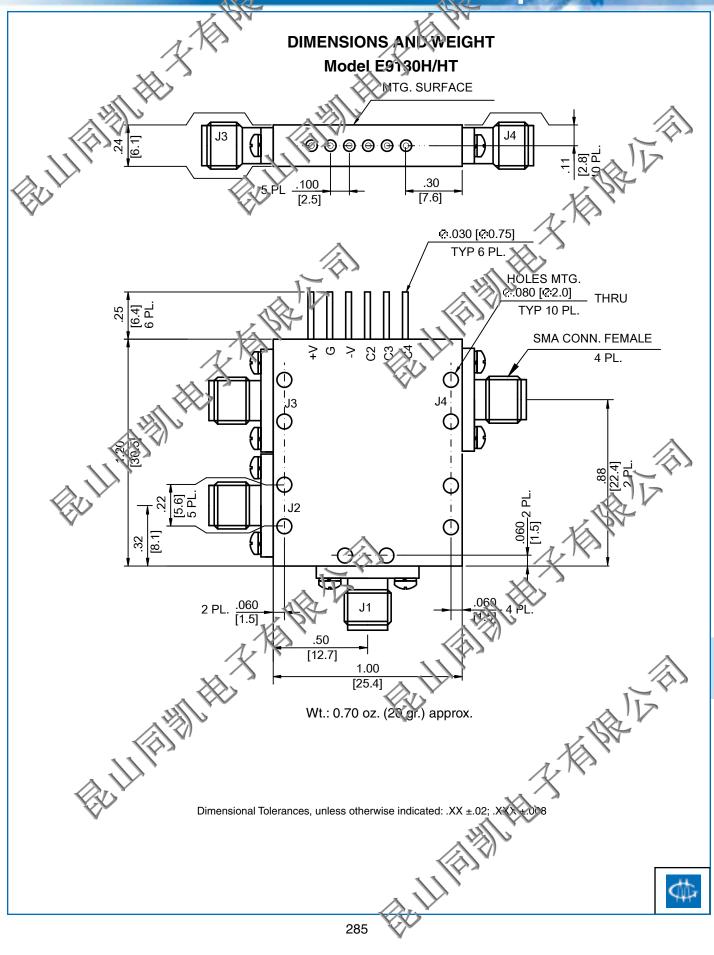
(Consult factory before ordering)

Option No.

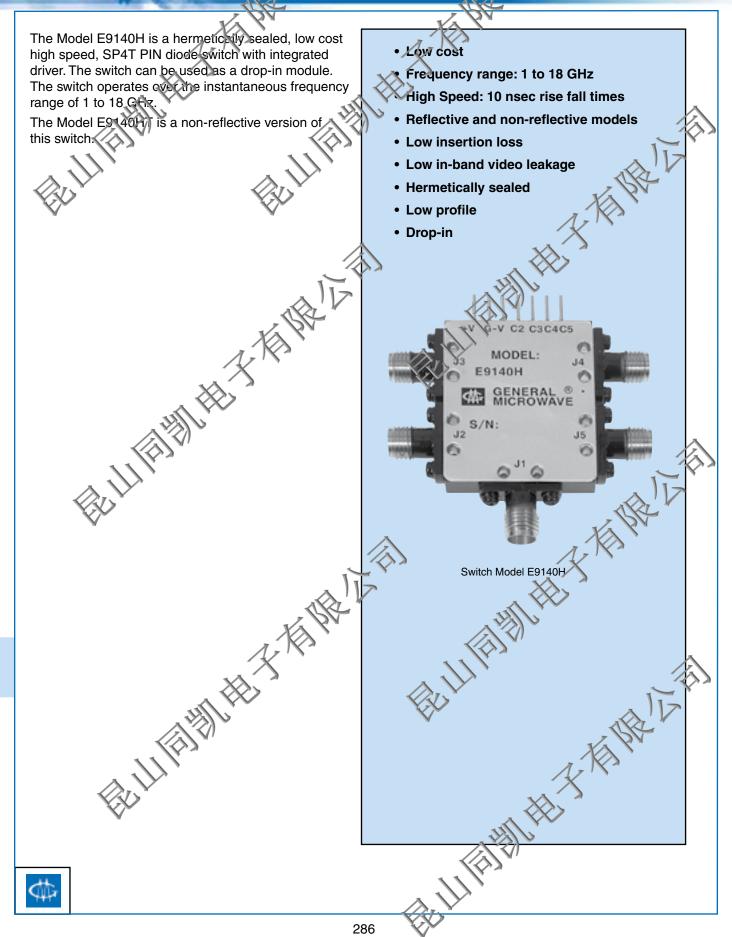
Description

- SMA nale RF connectors all ports
- 最加加斯斯 Inverse control logic; logic "1" for switch ON and logic "0" for switch OFF
- -5V, +5V operation
- Internal video filter, all posts
- High Reliability Screening (see page 394
- +5, -15V operation
- Guaranteed to meet Environmental Ratings G09 根子相限证

*See Video Filter Options on page 167


OPTION ENVIRONMENTAL RATING

- Operating Temperature Range -540C to +950C.
- Humidity MIL-STD-202G, Method 103B, Condition B (96 hours at 95%).
 - Shock MIL-STD-202G, Method 213B, Condition A (50G, 11 msec).
- Vibration MIL-STD-202G, Method 204D, Condition B (0.06" double amplitude or 15G.
- Altitude MIL-STD-202G, Method 105C, Condition B (50,000 ft.). 5
- Temperature Cycling MIL-STD-202F, Method 107D, Condition A (5 cycles.) STD E



大川原期 拱 子 村 村

Models E9130H and E9130HT SP31 Specifications

Models E9140H and E9140HT Hermetically Sealed Low Profile SP4T Switches

Models E9140H and E9140HT SPAT Specifications

PERFORMANCE CHARACTERISTICS

	X .	FREQUENCY (GHz)			
MODET	CHARACTERISTIC	1-4	4-8	8–12.4	12.4–18
E9140H	Min. Isolation (oS) Max. Insertion Loss (dB) Max. VSWR (ON)	60 1.4 1.75	60 1.5 1.75	60 2.0 1.75	50 2 8 2.0
E9140HT	Min. Isolation (dB) Max. Insertion Loss (dB) Max. VSWR Port On Max. VSWR Port Off	60 1.6 1.75 1.75	60 1.8 1.9 2.0	60 2,5 2.0 2.2	50 3.3 2.0 2.3

Power Supply Requirements						
	Standard	Witch	With Qr	tion 11	With Op	tion 62
MODEL NO.	+5V_±5°	−12V ±5%	+5V ±5%	–5V ±5%	+5V ±5%	-15V ±5%
E9140H	135 n.A max	65 mA max	135 m.A. max	65 mA max	135 mA max	65 mA max
E9140HT	125 mA max	65 mA max	135 mA max	65 mA max	135 mA max	65 mA max

Switc	hing√	Charac	teristics
-------	-------	--------	-----------

Rise Vine:	. 10 nsec max.
Fall Time	. 10 nsec max.
ON Time	. 25 nsec. max
OFF Time	. 20 nsec max.
Max. Repetition rate	. 20 MHz.

Power Handling Capability

Without Performance Degradation

Reflective Switches...... 200 mW cw or peak Non-Reflective Switches

... 100 mW cw or peak Input to OFF port:..... Input to ON port: 200 mW cw or peak Input to COMMON port 200 mW cw or peak Survival Power:

Reflective Switches...... 1W average 75W peak (1 µsec max) pulse width)

Non-Reflective Switches

Input to OFF port:..... 1W average, 10W peak (1) sec max. pulse width)

⅓W average, 75W peak Input to ON port: (1 µsec max. pulse width)

Input to COMMO

port: 1W average, 75W peak (1 µsec max. pulse width)

Control Characteristics

Control Input

In oedance TTL, 1-unit load

Control Logic

Logic "0"

.ar VIL = 0.8V) for switch ON(min. VIH = 2V) for switch On F

Models E9140H and €9140HT SP4T Specifications

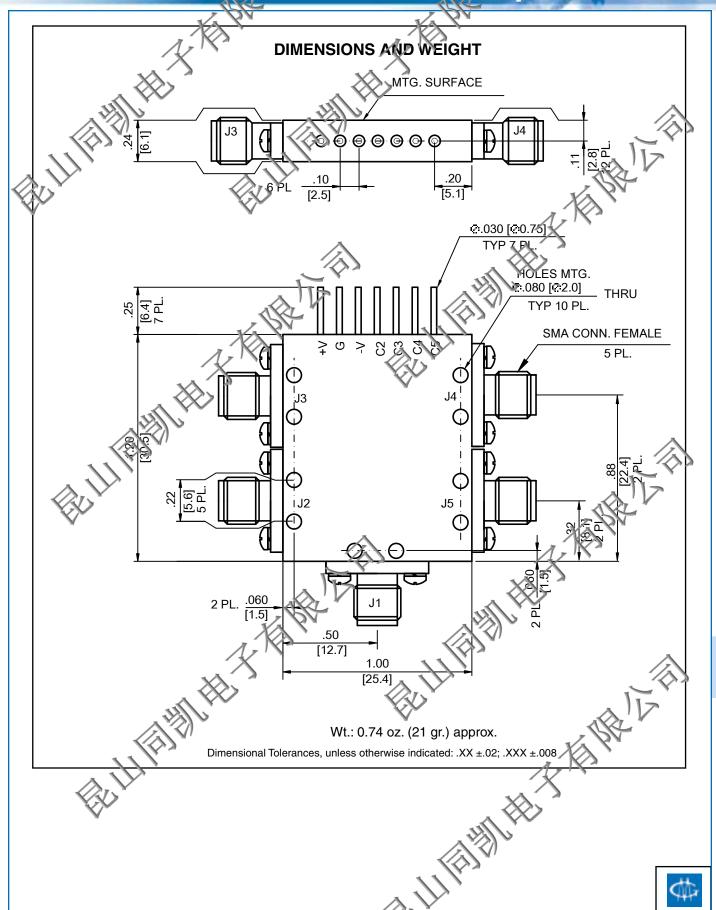
AVAILABLE OPTIONS

(Consult factory before ordering)

Option No.

Nescription

- SMA male RF connectors all ports
- Inverse control logic; logic "1" for switch ON and
- logic "0" for switch OFF
- +5V, -5V operation
- Internal video filter, all ports
- High Reliability Screening (see page 394
- 62 -15V operation
- G09 Guaranteed to meet Environmental Ratings

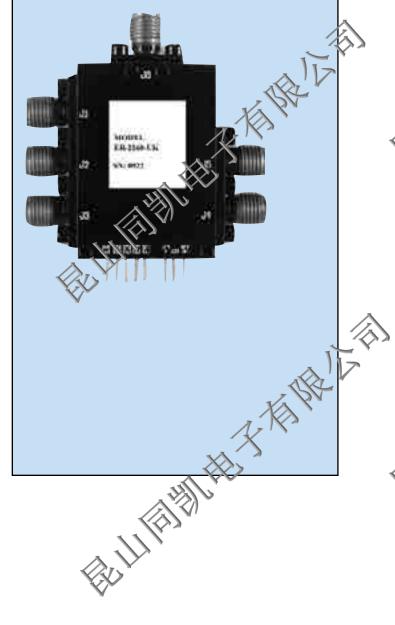

*See Video Filter Options on page 167

が関係した OPTION (G09) ENVIRONMENTAL RATING

- Operating Temperature Range -540C to +950C. 1
- Humidity MIL-STD-202G, Method 103B, Condition B (96 hours at 95%). 2
- Altitude MIL-STD-202G, Method 105C, Condition B (50,000 ft.).
 Temperature Cycling MIL-STD-202F, Method 107D, Condition A (5 cycles.).

是川原期 拱 子 村 村

Models E9140H and E9140HT SP4T Specifications


Model ER-2260-UK Rermetically Sealed Low Profile SP5T Switch

- Low VSWR and insertion loss
- Isolation: up 15 70 dB
- Small size, light weight
- With Integrated Driver
- Low Video Leakage
- Removable Connectors

The Model ER-2260-UK is a hermetically sealed, low cost high speed, SP5T PIN diode switch with integrated driver. The switch operates over the instantaneous frequency range of 0.5 to 18 GHz, with an option of 0.5 to 20 GHz

This switch can be ordered in the basic catalog configuration as specified below, or in a much thinner outline or as a drop-in switch..

最加加斯斯 最別人

Mode ER-2260-UK SP51 Specifications

ERFORMANCE CHARACTERISTICS

WODEL	Y. In	FREQUENCY (GHz)				
No.	CHARACTERISTIC	0.5-2	2-4	4-8	8-12	12-18
<u> </u>	Min. Isolation (05)	70	75	70	65	60
FR-2260-UK	Max. Insertion Loss (dB)	2.0	2.0	2.5	3.0	73.6
	Max. VSWR (ON)	1.8:1	1.9:1	2.0:1	2/0/27	4 2.0:1

witching Time

ON Time......20 nsec max. OFF Time......20 nsec max.

Power Handling Capability

Without Performance

Degradation,,,,,,......200 mW cw or pea

Survival Power1W CW, 20W peak (1 µsec

max. pulse with 5% duty cycle). Derate Linearly

to 50% at +95°C

Control logic...

Logic "0" (0 to +0.8V) =hsertion Loss Logic "1" (+2.0 to +5.5V) = 1 solution

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Range -54°C to 95°C

M/L \$7D-202F, Method 103B, Humidity

Cond. B

Shock..... MIL-STD-202F, Method 213B,

Cond. B

Vibration MIL-STD-202F, Method 204D,

> Cond. B (.06" double amplitude or 15G, whichever is less)

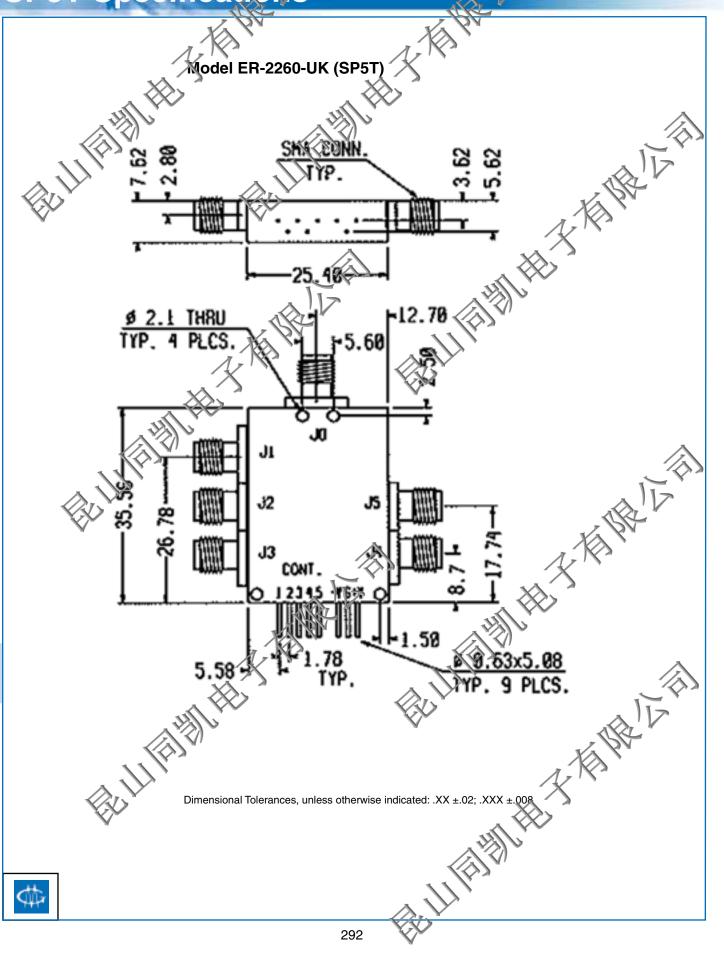
MIL-STD-202F, Method 105C, Altitude

Cond. B (50,000 ft.)

Thermal Shock.......... MIL-STD-202F, Method 107D,

Cond. A, 5 cycles

	Power Supply Requirements				
1					
	+5V ±0.5V (mA), max	140			
	-12V ±10% (mA), max				


AVAILABLE OPTIONS

- TTL control logic (inverting or non-inverting)
- BCD Decoder driver
- Other DC Voltage supply
- Very Lew Video Leakage
- Over Voltage Protection
- Non-Reflective
- Drop-In package
- Extremely Low Profile, thickness of 6.1mm (0.24")
- Option G09 Guaranteed to meet Environmental Ratings

Model ER-2260-UK SP5T Specifications

Model FR-2250-UK Hermer cally Sealed Low Profile SP6T Switch

The Model FR-2260-UK is a harmetically sealed, low cost high speed, SP67 PIN diode switch with integrated driver. The switch operates over the instantaneous frequency range of 0.5 to 18 GHz, with an option of 1 to 20 GNz

This switch can be ordered in the basic catalog configuration as specified below, or in a much thinner outline or as a drop-in switch...

根加州和

• Frequency range: 0.5 to 18 GHz

Low VSWR and insertion loss

• Isolation: up to 70 dB

· Small size, light weight

With Integrated Driver

Low Video Leakage

Removable Connectors

Model FR-2260-UK SP6T Specifications

BEAFORMANCE CHARACTERISTICS

	FREQUENCY (GHz)			
CHARACTERISTIC	0,5-2 2-4	4-8	8-12	12-18
Min. Isolation (dB)	1130 75	70	65	60
FR-2260-0K Max. Insertion Loss (dB)	3.0 2.0	2.5	3.0	3.6
Max. VSWR (ON)	1.9:1	2.0:1	2.0:1	2.0:1

Switching Time

OV ime......20 nsec max. CFF Time......20 nsec max.

Power Handling Capability

Without Performance
Degradation,,,,,,.......200 mW cw or peak
Survival Power1W CW, 20W peak () usec
max. pulse width with 5%

duty cycle). Derate kinearly to 50% at ±95 C

Control logicLogic "0" (0 to +0.8V) = Insertion Loss Logic "1" (2.0 to +5.5V) = Isolation

OPTION (G09) ENVIRONMENTAL PATRIGS

Operating Temperature

Range –54°C to +95°G

HumidityMIL-STD-202F, Method 103B, Cond.

Shock......MILSTD-202F, Method 213B, Cond.

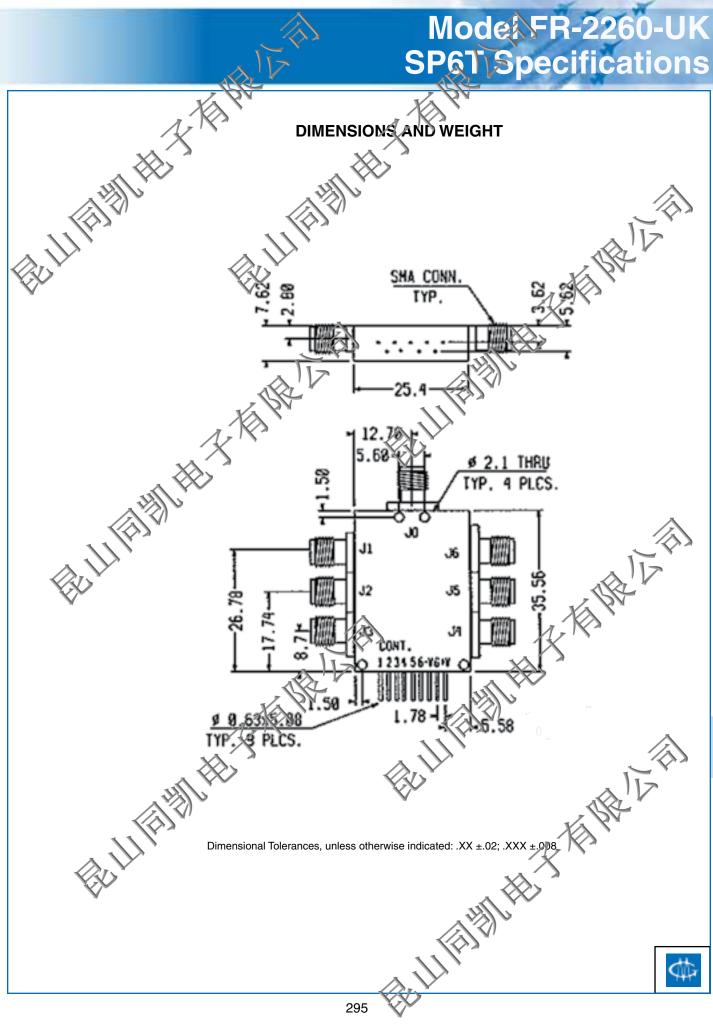
whichever is less)

Altitude MIL-STD-202F, Method 105C, Cond.

B (50,000 ft.)

Thermal Shock...... MIL-STD-202F, Method 107D, Cond.

A, 5 cycles


Power Supply Requirements			
+5V ±0.5V (mA), max	160		
-12V ±10% (mA), max	100		

AVAILABLE OPTIONS*

- TTL control logic (inverting or non inverting)
- BCD Decoder driver
- Other DC Voltage supply
- Over Voltage Protection
- Non-Reflective
- Drop-In package
- Extremely Low Profile, thickness of 6.1 mm (0.24")
- Option G09 Guaranteed to meet Environmental Ratings

Model FR-2260-UK SP61 Specifications

High Power & Medium Power Switches

HIGH POWER & MEDIUM POWER SWITCHES

KRATOS General Microwave offers wide selection of High and Medium Power PIN Diode Microwave Switches. Current non-reflective and reflective switch designs will support HF, UHF, IFF, L-Band, C-Band and Multi-Band operation with design capabilities up to 18 GHz. These switches are ideal for use in various systems including Communications, IFF, EW, Radar, Test Equipment and other applications demanding high performance, high reliability devices.

The High Power Switches are capable of handling power levels of up to 1K Watts the Medium Power Switches are capable of handling power levels of 30 Watts.

These High and Medium Power Switch designs are accomplished using PIN Diode shunt and shunt-series topology as required by the individual performance characteristics. Special materials are utilized for proper heat dissipation. A proprietary PIN Diode Driver, incorporating TTL control, has been designed for these switches. That driver is capable of supplying reverse bias of up to -100 Volts and forward current up to 150 mA.

Most of the High and Medium Power Switches are custom designs. Therefore, variations of Frequency Range, Switching Time, Operating Temperature are possible for many of the switches shown. Standard component packaging, unliking SMA or TNC RF connectors are shown but Carrier drop-in configurations are also available is some models.

HIGH POWÉR & MEDIUM POWER SWITCHES

FREQUENCY RANGE (GHz)	MODEL PAGE	DACE	COMMENTS	
0.1 0.2 0.5 1 2 4 8 12.4 18	MODEL	PAGE	COMMENTS	
SPDT	SWITCHES			
2.57.5	HPS-9257	297	200W CW	
1.41.8	SW-2367-01		60W CW	
0.250.8	SW-2746-02	302	100W Peak	
4.4 5.0	SW 2376-02		20W CW	
10%	HPS-9201	300	500W, L Band	
SPOT SWITCHES				
10%	HPS-9301	1	350 W Peak, IFF Band	
10%	HPS-9302	309	500W Peak, L Band	
10%	HPS-9303	111	1,000W Peak, L Band	
0.2 0.8	SW-2746-03	306	10W CW	
SP4T S	SWITCHES X			
3.017.0	HPS-9417	314	7W CW	
1.9 2.1	SW-1193-00 SW-1996-00	311	65W CW 50W CW	
	SP6T SWITCHES			
4.4 5.0	SW-2876-06	315	5W %W	

Model HPS-925 High Power SPDT Switch

HIGH POWER SWITCH Model 9257

KRATOS General Morowave has developed model HPS 9257 wide frequency sand High Power SP2T switch. This switch operates in the entire frequency range of 2.5 GHz to 7.5 GHz

This switch can be supplied in a carrier configuration or as a packaged switch.

限加州和

展別展展

- Wide Band 2.5 to 7.5 GHz
- Reflective
- Low insertion loss
- Cold Switching
- High Speed

SPEC AL ORDER PRODUCT TORY BEFORE ORDERING-

Switch Model HFS-925

Model HPS-9257 SPOT Switch Specifications >

PERFORMANCE CHARACTERISTICS

PARAMETER		V
Power Handling (W)		200 CW
Frequency Range (GHz)		2.5 te 7.5
Min. Isolation (dB)		20
Max. Insertion loss (dB)	1	1.2
VSWR ON	121	1.9:1

ON time	3.5	µsec	max.
ON time	3.5	usec,	max

数大桶根上面 **AVAILABLE OPTION**

- Carrier drop-in configuration 1.
- Packaged configuration 2.

Guaranteed to meet Environmental Ratings G09

展別展場

	y Requireme	3.5 µsec ma 3.5 µsec ma			
MODEL	MODEL +5V±5% Negative Voltage				
4 4	mA	V	mA		
HPS 9257	250	-50	10		

Control Characteristics

Control Input Impedance TTL, low power Schottky,

one unit load. (A unit load is 0.8 mA sink current and 40 µA source current

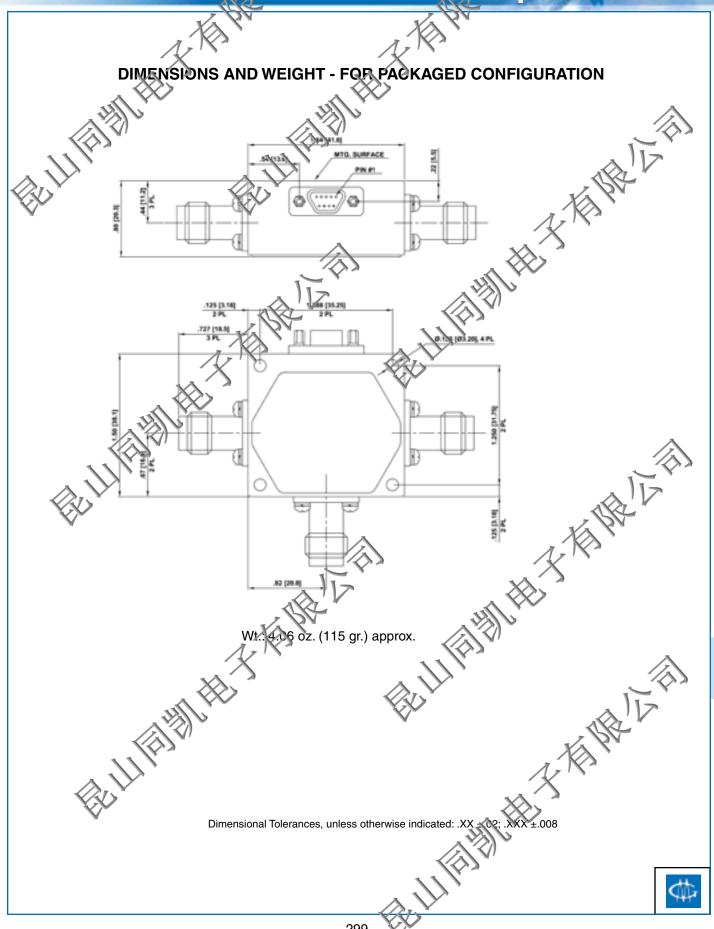
Control LogicLogic "0" (-0.3 to +0.

for port ON and locic '1 (+2.0 to +5.0 V) for port ÒFF.

OPTION (G09) ENVIRONMENTAL RATINGS

Temperature Range

Operating.........65°C to +105°C Non Operating.......65°C to +125°C


Humidity MIL-STD-202F, Method 103B, Cond. B (96 hrs. at 95%)

Shock....... MIL-STD-202F, Method 213B, Cond. B (75G, 6 msec)

Altitude MIL-STD-202F, Method 105C, Cond. B (50,000 ft.)

Model HPS 9257 SPDT Switch Specifications

High Power SPDT Switches Series HPS 9000

- Low insertion (css
- High Speed
- Cold Switching
- Non-reflective

SPECIAL ORDER PRODUCT

CONSULT FACTORY BEFORE ORDERING-

HIGH POWER SWITCHES SERIES HPS9000

KPATOS General Microwave has developed series HPS900 line of High Power SPDT switches for various applications. These switches operate in the IFF and L bands, providing Power handling capability of up to 1kW in cold switching.

Typically these switches are assembled in a multi-switch assembly. The number of switches in the sub-assembly depends upon the specific architecture of the system. The control and supply voltages to the switch sub-assembly is supplied via a multi-pin connector.

Switch Model HPS-9201 (8 SWITCHES IN A SUB-ASSEMBLY)

展別開展

Series HPS 9000 SEDT Switches Specifications

PERFORMANCE CHARACTERISTICS

The things	MODEL
PARAMETER	HPS 9201
Power Handling (W), 100 µsec pulse width, 10% duty cycle	500
Frequency Range	L Band
Frequency Bandwidth	10%
Min. Isolation (dB)	40
Max. Insertion loss (dB)	1.2
VSWR ON and OFF	1.4:1

Switching Characteristics

ON time	3.5 µsec max.
OFF time	35 usec max.

Power Supply Requirements

(For one port ON)

+5V ±5%	-60V
070 4	40 4
270 mA	40 mA

Control Characteristics

Control Input impedance TTL, low power Schottky,

one unit load. (A unit load is 0.8 mA sink current and 40 µA source current.)

Control LogicLogic "0" (-0.3 to +0.8V) for port ON and logic "1" (+2.0 to +5.0 V) for port

ÒFF

AVAILABLE OPTIONS*

- 1. Operating Frequency Range
- 2. Mechanical Configuration
- 3. Option **G09** Guaranteed to mest Environmental Ratings

OPTION (G09) ENVIRONMENTAL RATINGS

Temperature Range

Operating...... -55°C to +70°C Non Operating......-65°C to 4125°C

DIMENSIONS AND WEIGHT

These High Power Switches are normally incorporated in systems as a sub-assembly of two or more switches. For this reason specific outline and weight information can be provided per specific requirement.

High and Medium Power SPDT Switches Series SW-2000-01

- Low insertion loss
- High Isolation
- Reflective and non-reflective models
- Fast Switching Speed

SPECIAL ORDER PRODUCT

CONSULT FACTORY BEFORE ORDERING-

HIGH POWER SPDT SWITCH

HIGH AND MEDIUM POWER SWITCHES Swigs SW-2000-01

RRATOS General Microwave has developed series SW-2000-01 High and Medium Power SPDT switches for various applications in the frequency range of 30 Hz to 5 GHz in various sub-bands.

展別展場 是加州和州

Series SW-2000-01 SEDT Switches Specifications

PERFORMANCE CHAPACTERISTICS

	MODEL		
PARAMETER	SW-2367-01	SW-2746-02	SW-2876-02
Frequency Range (GHz) max.	1.4 to 1.8	0.25 to 0.8	4.4 to 5.0
Power Handling	THE CONTRACTOR OF THE PARTY OF		
CW (W) max.	69	N/A	20
Peak-Power (W) max.	N/A	100	N/A
a) Pulse Width (µsec) max.	N/A	50	N/A
b) Duty Cycle %	N/A	20	N/A
Isolation (dB) min.	35	40	60
Insertion loss (dB) max.	1.0	1.0	7.2
VSWR ON	1.6:1	1.5:1	1.5:1
VSWR OFF	N/A	1.6:1	/) N/A

Power Supply Requirements

(For one port ON)

MODEL	+57 -5%	Negative Voltage	
) MA	V	mA
SW-2367-01	200	-50	30
SW-2746 02	170	-60	30
SW-2876-02	150	-15	20

Control Characteristics

Control Input Impedance TTL, low power

Schottky, one unit load. (A unit load is 0.8 mA sink current and 40 hA source current.)

Control LogicLogic "0" (-0.3 to

+0.8V) for port ON and logic 1" (+2.0 to +5.0 V) to port OFF.

Switching Characteristics

Cold Switching

Model SW-2876-02

ON OFF Time100 nsec max

Switching Rate1 MHz max

All Other Models

ON OFF Time......10 µsec max.

AVAILABLE OPTIONS

- 1. Different Operating temperatures
- 2. Faster Switching Speeds
- 3. Inverse Control Logic
- 4. Option G03 Guaranteed to meet Environmental Ratings

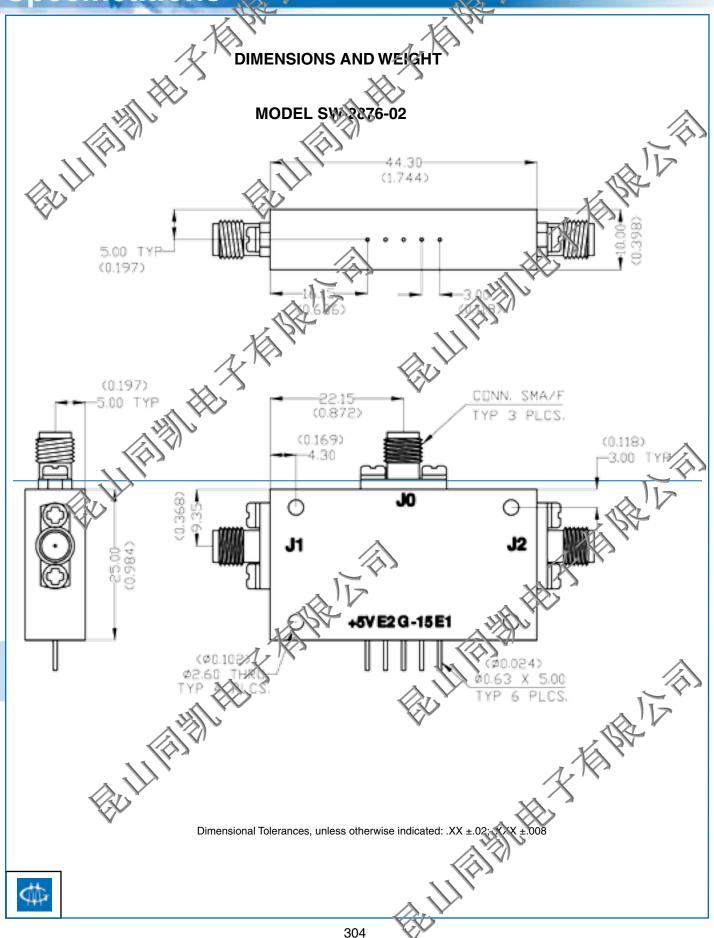
OPTION (GOO) ENVIRONMENTAL RATINGS

Operating Temperature ..-30°C to +85°C

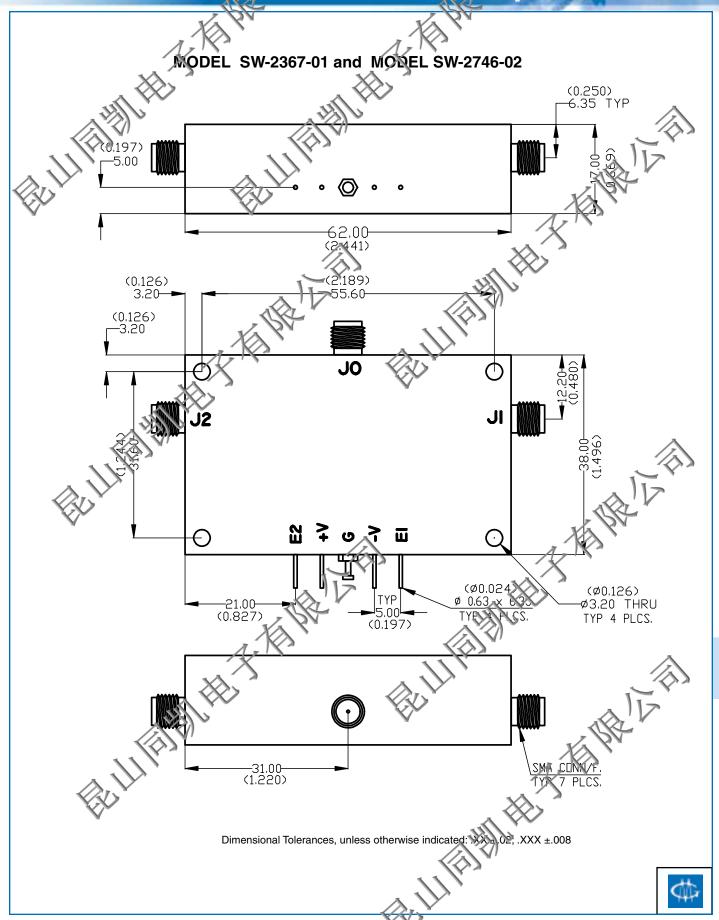
Storage Temperature -50°C to +120°C

Humidity.....MIL-STD-202F, Method 103B, Cond. B (96 hrs at 95%)

ShockMIL-STD-202F, Method 213B, Cond. B (75%, 6 msec)


Vibration......MIL-STD-202F, Method 204D, Cond. B (06") ouble amplitude or 15G,

whichever is less)


AltitudeMIL-STD-202F, Method 105C, Cond. B (50,000 ft.)

Series SW-2000-01 SPDT Switches **Specifications**

Series SW-2000-01 SEDT Switches Specifications

Medium Power SP Switch Model SW-2746-03

MEDIUM POWER SP37 SWITCH Model SW-2746-037

KRATOS General Micro vave has developed model SW-2749-03 Medium Power SP3T switch, in the frequency range of 200 MHz to 800 MHz, for various applications.

SPECIAL ORDER PRODUCT -CONSULT FACTORY BEFORE ORDERING

- Medium Power
- Low insertion loss
- High Isolation
- Terminated

限加州和 展別展開

Model SW-2746-03 SP3T Switch Specifications

PERFORMANCE CHARACTERISTICS

, (X)	MODEL
FARAMETER	SW-2746-03
Frequency Range (MHz) min.	200 to 800
Power handling	11/2/2
Peak-Fower (W) max.	10
Pulse Width (µsec) max.	50
b) Duty Cycle (%)	20
Isolation (dB) min.	50
Insertion loss (dB) max.	0.7
VSWR ON	1.4:1
VSWR OFF	1.6:1

Power Supply Requirements

(For one port ON)

MODEL \$25% Negative Voltage			
mA	V	mA	
SW-2746 03 200	-28	30	

Control Characteristics

Control Input Impedance TTL, low power Schottky,

one unit load. (A unit load is 0.8 mA sink current and 40 µA source current.)

期提大樹屋位

Control LogicLogic "0" (-0.3 to +0.8)

for port ON and logic (1) (+2.0 to +5.0 V) for port OFF.

Switching Characteristics

Cold Switching

On Off Time.....1 µsec max.

Switching Rate............0.1 MHz max

AVAILABLE OPTIONS

- 1. Different Operating temperatures
- 2. Different Switching Speeds
- 3. Inverse Control Logic
- Option G09 Guaranteed to meet Environmental
 Ratings

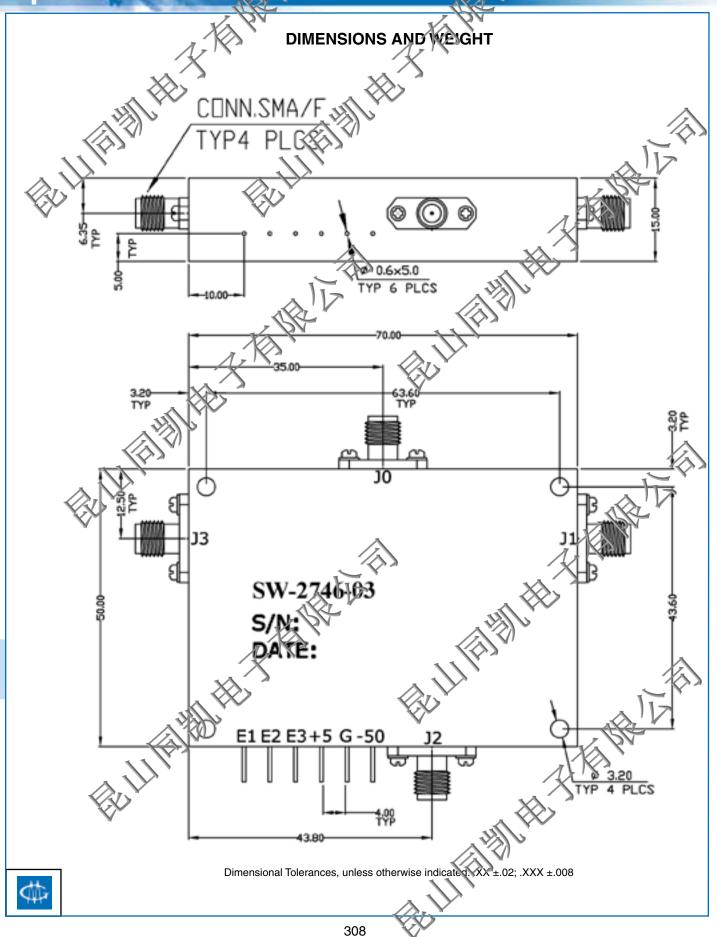
OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature ... 20°C to +60°C

Storage Temperature -30°C to +95°C

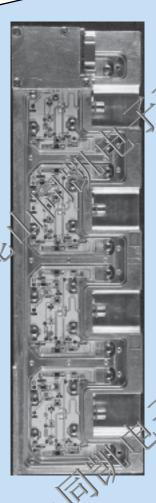
Humidity.......MIL-STD-202F, Method 103B, Cond. B (96 hrs. at 95%)

Shock MIL-STD-202F, Method 213B, Cond. B (75G, 6 msec)


Vibration.........MIL-STD-202F, Method 204D, Cond. B (.06" double amplitude or 15G,

whichever is less)

AltitudeMIL-STD-202F, Method 105C, Cond. B (50,000 ft.)


Model SW-2746-03 SP3T Switch Specifications

High Power S83T Switches Series HPS 9000

- High Power
- Low insertion issis
- High Speed
- Cold Switching
- Non-reflective

SPECIAL ORDER PRODUCT STEUIAL UNDER PHUDUUL CONSULT FACTORY BEFORE ORDENING

Switch Model HPS-9302 (4 SWITCHES IN A SUB-ASSEMBLY)

HIGH POWER SWITCHES SERIES HPS 9000

KRATOS General Microwave has developed series HPS900 line of High Power SP3T switches for various applications. These switches operate in the IFF and bands, providing Power handling capability of up to 1kW in cold switching.

Typically these switches are assembled in a multi-switch assembly. The number of switches is one sub-assembly depends upon the specific architecture of the system. depends upon the specific architecture of the syste. The control and supply voltages to the switch subassembly is supplied via a multi-hin connector.

展別展開 限证

Series HPS 9000 SPST Switches Specifications

PERFORMANCE CHARACTER

	MODEL		
PANAMETER	HP\$ 9301	HPS 9302	HPS 9303
Power Handling (W), 100 µsec pulse width, 10% duty cycle	350	500	1,000
Frequency Range) IFF	L BAND	L BAND
Frequency Sandwidth	10%	10%	10%
Min. isolation (dB)	40	30	40
Max. Insertion loss (dB)	1.2	1.2	1.3
VSWR ON and OFF	1.4:1	1.4:1	1.4:

Switching Characteristics

ON time	3.5	µsec	max
OFF time	3.5	µsec	max.

Power Supply Requirements

(For one port ON)

MODEL	+5V ±5%	Negative Voltage	
	J. Hilli	V	mA
HPS 9301	100	-60	40
HPS 9302	450	-60	40
HPS 9303	450	-90	40

Control Characteristic

Control Input Impedance TTL, low power Schottky, one unit load. (A unit load is 0.8 mA sink current and

40 µA source current.)

Logic "0" (-0.3 to +0.8V) for port ON and logic "1" (+2.0 to +5.0 V) for port

AVAILABLE OPTIONS

- 1. Operating Frequency Range
- 2. Mechanical Configuration
- 3. Option G09 Guaranteed to meet Environmental Ratings

OPTION (G09) ENVIRONMENTAL RATING

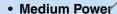
Temperature Range

Operating..... -55°C to +70°C

Non Operating......-65°C to +125°C

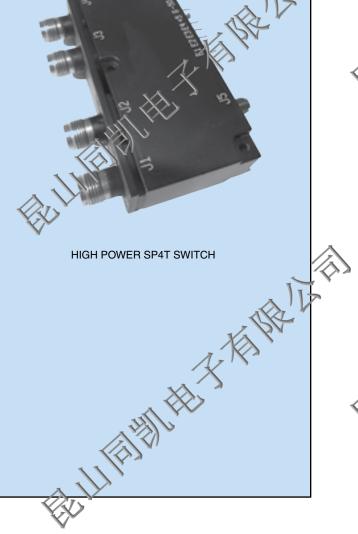
Humidity MIL-STD-202F, Method 103B, Cond. B (96 hrs. at

Shock...... MIL-STD-202F, Method 213B, Cond. B (75G, 6 msec)


STD-202F, Method 105C, Cond. 5 (50,000 ft.)

DIMENSIO

These High Power Switches are normally incorporated in systems as a sub-essembly of two or more switches. For this reason specific outline and weight information can be provided per specific requirement.



Medium Power SAAT Switches **Series SW-1000-00**

- Low insertion loss
- High Jsolation
- Non Reflective

SPECIAL ORDER PRODUCT CONSULT FACTORY BEFORE ORDERING

MEDIUM POWER SP4T SWITCHES Series SW 1000-00

KRATOS General Microwave has developed series Jr v JHz to pplications. SW-1000-00 Medium Power SP4T switches for various applications in the frequency range of 1.0 GHz to 2.1 GHz in various sub-bands for various applications.

展別展開 All Fill Hard To All F

Series SW-1000-00 SP4T Switches Specifications

PERFORMANCE CHARACTERISTICS

	MODEL	
PARAMETER	SW-1193-00	SW-1996-00
Frequency Range (GHz) min.	1.0 to 1.3	1.9 to 2.1
Power Handling		
CW (W) max.	6.5	50
Isolation (dB) min.	30	30
insertion loss (dB) max.	1.0	1.3
VSWR ON	1.5:1	1.4:1

Power Supply Requirements

(For one port ON)

MODEL	+5V ±5%	Negative	Voitage
	mA	XXX	mA
SW-1193-00	250	-50	60
SW-1996-00	150	-28	50

Control Characteristics

Control Input impedance TTL, low power Schottky, one unit load. (A unit load is 0.8 mA sink current and

is 0.8 mA sink current and 40 µA source current.)

Control LogicLogic "0" (-0.3 to +0.8V) for port ON and logic "1" (+2.0 to +5.0 V) for port

OFF.

Switching Characteristics

Model SW-1193-00

Cold Switching

On Off Time10 µsec max Switching Rate......2 kHz max.

Model SW-1996-00

Cold Switching

On Off Time......5 µsec max Switching Rate......10 kHz max

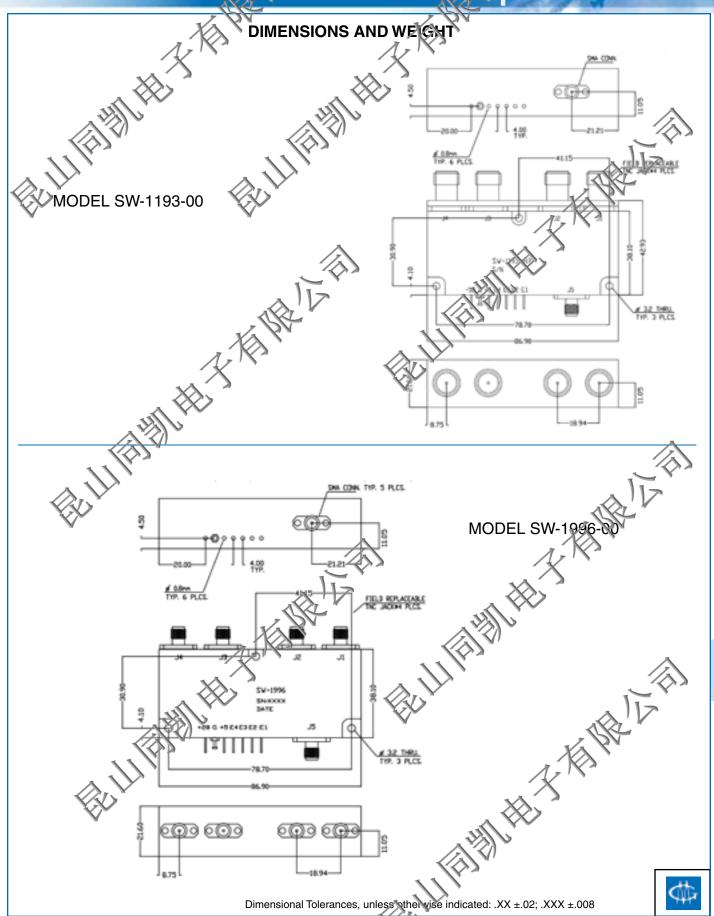
AVAILABLE OPTIONS

- 1. Different Operating temperatures
- 2. Higher Switching Speeds
- 3. Inverse Control Logic
- 4. SMC or SMA output Connectors
- 5. Option G09 Guaranteed to meet Environmental Ratings

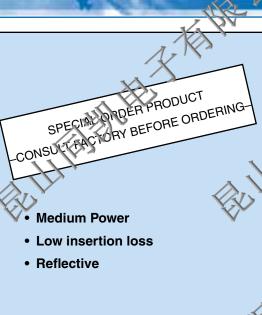
OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature ... 30 °C to +55°C

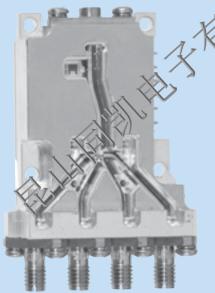
Storage Temperature ... -60°C to +120°C

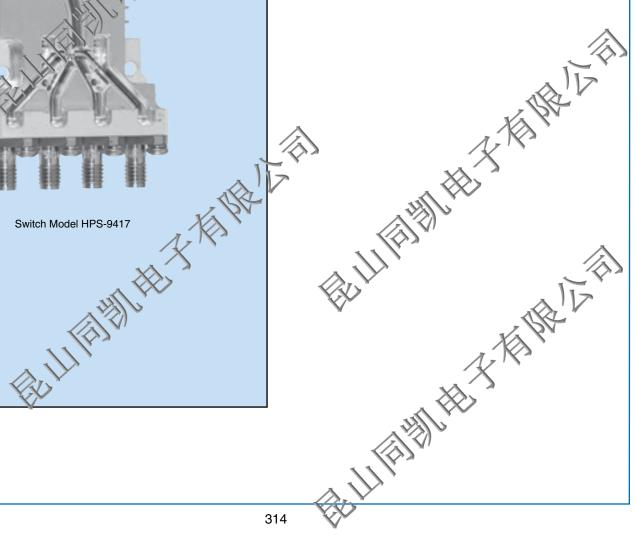

Humidity.....MIL-STD-202F, Method 103B, Cond. B (96 hrs. at 95%) **Shock**MIL-STD-202F, Method 213B, Cond. B (75G, 6 msec)

whichever is less)


AltitudeMIL-STD-202F, Method 105C, Cond. B (50,000 ft.

Series W-1000-00 SPAT Switches Specifications




Medium Power SP4 Switch Model HPS-9417

MEDIJIM OWER SP4T SWITCH MODEL

KPATOS General Microwave has developed model 14PS 9417 Medium Power SP4T switch for various 12 ft. applications in the frequency range of 5 to 17 GHz for various applications.

Model HPS-9417 SP4T Switch Specifications

PERFORMANCE CHARACTERISTICS

	MODEL	HPS-9417
PARAMETER	XX **	
Frequency Rayge (GHz) max.	5 to 12	12 to 17
Power Handling, CW (W) max.	7/2	7
Isolation (dB) min.	20	20
Insertion loss (dB) max.	2.1	2.3
VSWR ON	2:1	2:1

Power Supply Requirements

(For one port ON)

+5V ±5%	-12V ± 0 2
mA	in.
80	80

Control Characteristics

Control Input Impedance TTL, low power

Schottky, one unit load. (A unit load is 0.8 mA sink current and 40 µA source current.)

Control Logic Logic "0" (-0.3 to

+0.8V) for port ON and logic "1" (+2.0 to +5.0 V) for port QFF.

Switching Characteristics

Cold Switching

ON OFF Time100 nsec

AVAILABLE OPTIONS

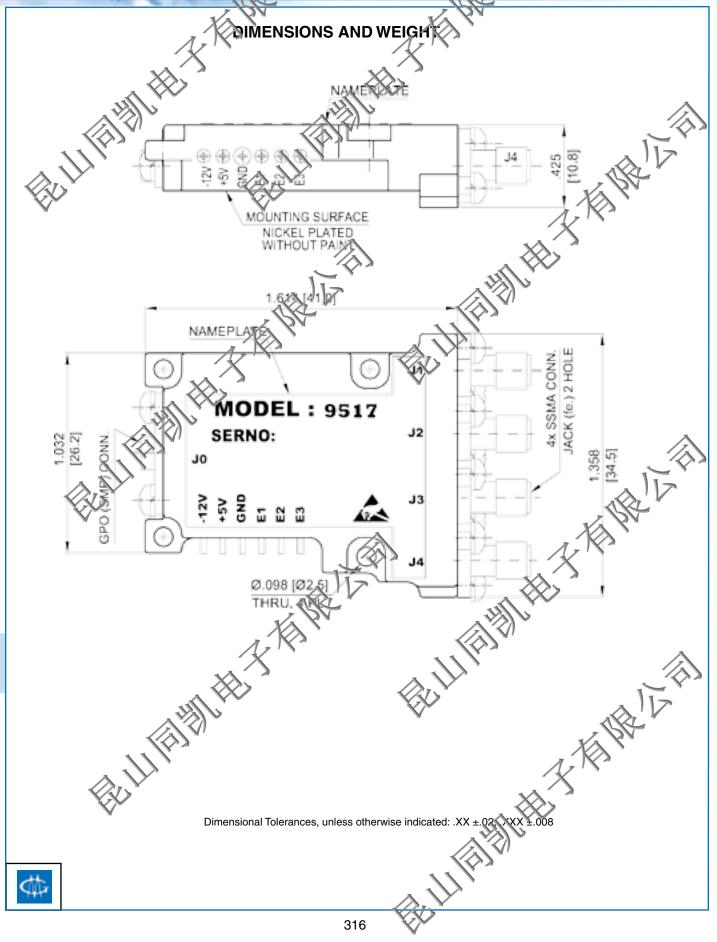
- 1. Wider Operating Frequency Range
- 2. Other Type of Connectors
- 3. Option **G09** Guarante ed to meet Environmental

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature ..-30°C to +85°C

Storage Temperature -50°C to +120°C

Humidity......MIL-STD-202F, Method 103B, Cond. B (96 hrs. at 95%)


VibrationMIL-STD-202F, Method 204D, Cond. B (.06" double amplitude or 15G,

whichever is less)

AltitudeMIL-STD-202F, Method 105C, Cond. B (50,060 ft)

Model HPS-9417 SPAT Switch **Specifications**

Medium Power SP6T Switch Model SW-2876-06

- Low insertion lass
- High Isolation
- Reflective
- Fast Switching Speed

MEDIUM POWER SP6T SWITCH Model

KRATOS General Microwave has developed model Jr van Jr van Jr van Jr van SW-2876-06 Medium Power SP6T switch for various applications in the frequency range of 4.4 GHz to 5.0 GHz for various applications.

展別展開

Model SW-2876-06 SP6T Switch Specifications

PERFORMANCE CHARACTERISTICS

× × ×	MODEL
PARAMETER	SW-2876-06
Frequency Range (GHz) min.	4.4 to 5.0
Power Handing	
CW (W) Max.	5
Isolation (dB) min.	55
insertion loss (dB) max.	¥.7
VSWR ON	1.5:1

Control Characteristics

Control Input Impedance TTL, low power Schottky,

one unit load. (A unit load is 0.8 mA sink current and 40 µA source current.)

Control LogicLogic "0" (-0.3 to +0.8V) for port ON and logic "1" (+2.0 to +5.0 V) for port

(+2.0 to +

Power Supply Requirements

(For one port ON)

MODEL	+5 \ ±5%	Negative Voltage	
1	mA	V	mA
SW-2876-96	180	-15	60

AVAILABLE OPTIONS

- 1. Different Operating temperatures
- 2, Inverse Control Logic
 - . Option G09 Guaranteed to meet Environmental Ratings

Switching Characteristics

Cold Switching

On Off Time.....85 nsec. may.

Switching Rate......2 MHz max

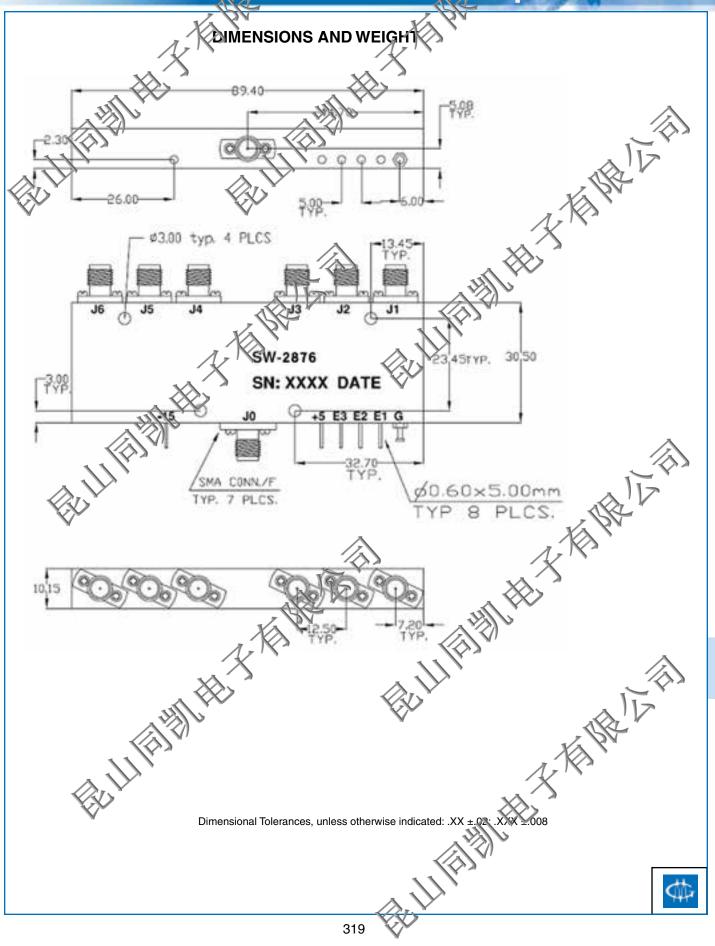
OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature ,-54°C to +85°C

Storage Temperature -60°C to +120°C

Humidity........MIL-STD-202F, Method 103B, Cond. B (96 hrs. at 95%)

ShockMIL-STD-202F, Method 213B, Cond. B (75G, 6 msec)


Vibration......MIL-STD-202F, Method 204D, Cond. B (.06" double ampitude or 15G,

whichever is less)

AltitudeMIL-STD-202F, Method 105C, Cond. B (50,000 ft

Model SW-2876-06 SP6T Switch Specifications

Limiters Series LIM

Limiter Products

KRATOS General Microwave offers PIN diode-based limiters, supporting up to 600 yatts of pulsed power.

The limiters can be supplied in various configurations: connectorized, drop-in or with field-removable connectors.

The limiters can be supplied as stand alone limiters or as integrated modules that include the limiter and a control component such as a switch or attenuator as specified in the following:.

SWITCH LIMITERS

A switch module is available before the limiter, handling up to 25-watt CW/ 250-watt Peak power.

LIMITER ATTENUATOR

Provides combined protection and attenuation capabilities (Option).

LIMITER AMPLIFIER

A limiter and an amplifier module that maintains the required power. Signal is amplified if power is not within the specified range (Option).

Low Power Limiters

Support 1GHz – 18GHz, up to 20-Watts Average power and 500-watt Peak power.

High Power Limiters

Support 1GHz – 12GHz, up to 60-Watts Average power and 400-watt Peak power.

Parameters Trade-off

The main parameters of Limiter specifications are Frequency Band, Input Power and Flat Leakage. Note that there is a trade-off between these parameters.

- Broadband
- Coaxial and Drop-In Modules
- High-Power Ratings

Medium Power Limiter

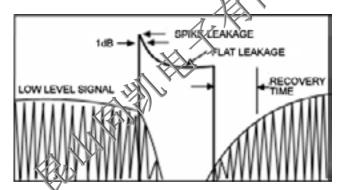
High Power Limiter

Switch Limiter

JURIN H. F. KIND IZ

Limiters Series LIM

DEFINITION OF PARAMETERS


Recovery Time:

The time period from the end of a high power pulse to the point where the insertion loss value has returned to within 3 dE of the quiescent loss state.

Spike Leakage:

After pulsed high power is applied, the limiter will momentarily pass significantly more power than when it is totally saturated. This power rise is seen as a spike on the leading edge of the leakage pulse. The rise time of the high power pulse and the turn-on time of the diode determine the spike's amplitude. The spike is defined by its energy content, i.e., in ergs. The formula for calculating the spike leakage is as follows:

SPIKE LEAKAGE (ERGS) = t_s x P_s x 10^7 where t_s equals spike width at the half-power point in seconds, and P_s equals maximum spike arrolitude in watts.

Power Handling:

There are two important things to consider when defining the power handling required of a limiter. Two important considerations for defining the required power handling of a limiter are:

- Peak Pulsed Power: for narrow pulses, equated to an equivalent CW power by multiplying the Peak Power by the Duty Cycle. For pulses exceeding 10 microseconds, Peak Power is considered CW
- Source VSWR: When is it fully turned on, the Limiter short circuits across the transpission line, and 90% incident power is reflected back towards the source

Any mismatch at the source rellects power back toward the limiter, resulting in standing waves. In a correct limiter-source phase relationship, the maximum current point occurs at the input diode, causing the diode to dissipate a greater level of power than

incident power. For a source VSWR of up to 2.0:1, an approximate maximum effective power can be achieved by multiplying the source VSWR by the incident power.

The following formula applies for source VSWRs over 2.0:1:

 $PA = \frac{P_s}{\text{where:}} [1 \pm (PF_L *PF_S)]^2$

- PA = actual power
- PS = source power
- PFL = load (limiter) power factor 2.96 typical,
- PFS = source power factor.

CONSIDERATIONS IN USING LIMITERS

- The difference between the flat leakage and the 0.1 dB compression point is typically between 10 and 13 dBm, but may vary according to limiter type
- Noise of 10 dBm may be generated following the start of limiter compression. However, limiters can and usually do exhibit signs of limiter compression at 0 dBm
- Limiters dissipate approximately 8% of incident power as heat. Therefore, all limiters should be attached to a heatsink whose temperature does not exceed the maximum rated ambient temperature.
- Limiters are inherently broadband components. Band limitation results from DC return are required by some limiter designs. Limiters with bandwidths of up to 10:1 are relatively simple while those with bandwidths exceeding 10: 1 are progressively more complex and costly.

CAUTION! Limiters are NOT bilateral components! They have a defined input and output. Backwards installation will damage the component.

Limiters Series LIM

Limiters Selection Clarke

171	171			
FREQUENCY RANGE (GHz) 1.0 2.0 4.0 6.0 10 14 16 18	INPUT POWER	MODEL	PAGE	COMMENTS
1.0 2.0 4.0 10 14 10 10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
1.0	CW: 2 W Peak: 150 W	LIM-118-L		, (
20	CW: 1 W Peak: 150 W	LIM-218-L	321	ARL V
2.0	CW: 3 W Peak: 500 W	LIM-218-H	X	Ph
10 5	CW: 20 W Peak: 50 W	LIM-1015-20	322	
1.0 — 2.0	SW: 40 W Peak: 400 W	LIM-12-VHP		
1.2—1.4	CW: 30 W Peak: 300 W	LWW-7214-WHP	323	
3.1—3.5	CW: 25 W Peak: 250 W	L/M-335-VHP		
3.0	CW: 5 W Peak: 50 W	LIM-812-50		
8.4——9.6	CW: 15 W Peak: 315 W	LIM-89-15	324	
1.28-1.4	CW: 30 W Peak: 300 W	LIM-2564-00		1
1.2=1.4	CW: 25 W Peak: 250 W	LIM-2019-50	325	Switch Limiters
3.1—3.5	CW: 20 W Peak: 200 W	LIM-2019-80	X	Silvinineis

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature

Range.....

Non-Operating

Temperature Range -55°C to +8

Humidity RTCA/DO-160D, CATEGORY B Sec. 6.3.2)

RH Operating 95% @ 60 oC

Shock..... P7SA/DO-160D Section 7 Category B

RTCV/DO-160D CATEGORY R OR R2 Sec CONDE,) Vibration.....

SS THE PARTY OF TH SECTION 8, PAR. 8.7.2 FIG. 8-1 & 8-4. CURVE C & C1, G

AVAILABLE OPTIONS

Description

Guaranteed to meet Environmental

Option No.

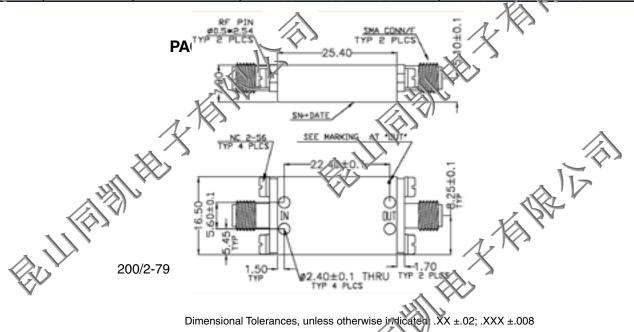
G09

RMS 4.12 & 5.83.

RANDOM 30 MIN AT PERFORMANCE LEVEL AND 3 HRS AT

ENDURANCE LEVEL FOR EACH AXIS.

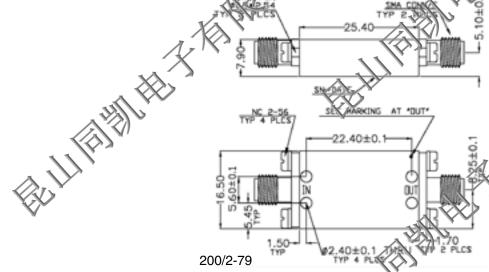
(70,000 ft.)


MIL-STD-202F, Method 107D, Cond. A, 5 cycles Temp. Cycling

Limiters Series Lim Broadband Specifications

			_	- X/	7 - 1	
2	ERFORM	IANCE	CHARA	CYFK	USTICS	
ď		IAITOL	OHAHA	7		

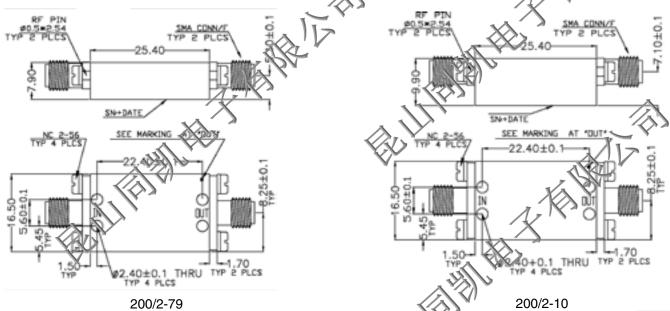
MODEL			LIM-118-L	LIM-218-L				LIM-218-H			
Frequency Range, (GHz) Max. Insertion Loss, (dB) VSWR, max		4.40	2-18GHz				2-18GHz				
		, (GHZ)	1-18	3	4 -8	8-12	12-18	2-4	4 -8	8-12	12/18
		ss, (dB)	2.5	1.0	1.4	1.8	2.3	1.3	1.8	2.2	2.7
			2.0:1	1.7:1	1.9:1	1.9:1	2.0:1	1.7:1	1.9.1	1.9:1	2.0:1
Input Power (CW CW		5	1			3				
Peak Pulse Width, (µSec) Duty Cycle, % max. Flat Leakage, (mW) Recovery Time Max. (nsec)		500	150			500					
		1	1			1					
		N PV	0.1			0.1					
		100	150	150 130 130 130		150 130 130 130		130			
		200	100				200				
Environmental Conditions			See Page 318								
Package Type		200/2-79	200/2-79			200/2-79					
Input		SMA (M)	SMA (F)			SMA (F)					
Connectors -	Output		SMA (F)	SMA (F)			SMA(F)				



Limiters Series LIM Narrowband Specifications

PERFORMAN	NCE CHARACTERISTICS	
_	- // - / &	

	. 1					
MGD	L	LIM-1015-20				
Frequency Range, (GHz)		10 - 15				
Max.Insertion Loss,	(dB)	2.0				
VSWR, max.		1.8:1				
Input Power may (M)	CW	20				
Input Power, max (W)	Peak	50				
Pulse Width, max (μSc	ec)	1				
Duty Cycle % max.		0,1				
Flat Leakage , (dBm)	KASI					
Recovery Time, max (nsec)	400				
Environmental Condit	ions	See Page 318				
Package Type		200/2-79				
	Input	SMA (F)				
Connectors:	Output	SMA (F)				
		PACKAGE TYPE & DIMENSIONS				
PACAGE I TPE & DIWIENSIONS						
TYP 2,000						
	NA		_			

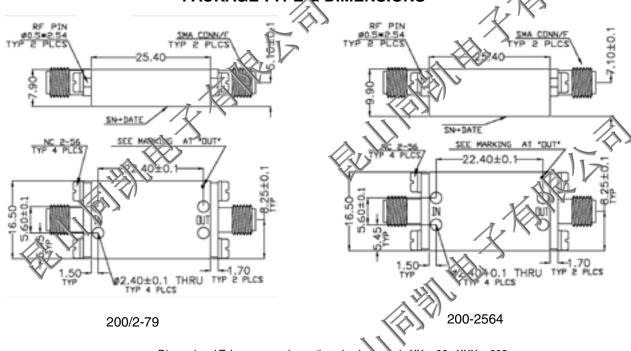

Dimensional Tolerances, unless otherwise indicated: .XX $\pm .02$; .XXX $\pm .008$

Limiters Series LIM Narrowband Specifications

/	A 4			_/ \/
			OLIABAA	TERISTICS
-		// // KI/ - 🗀	1 - H N D N I -	
/ 0	nruni	MAINGE	CHARAC	
			• • • • • • • • •	

MODEL Frequency Range (CHz)		LIM-1214-VHP	LIM-335-VHP	
		1.2 - 1.4	3.1 - 3.5	
dB)	0.3	0.7	1.0	
	1.5:1	1.3:1	1.3:1	
CW	40	30	25	
Peak	400	300	250	
Pulse Width, max (µSEc)		20	50	
Duty Cycle % max		1014	10	
W)	100	100	32	
nsec)	400	400	350	
Environmental Conditions		See Page 318		
Package Type		200/2-10	200/2-79	
Connectors		SMA (F)	SMA (F)	
t	SMA (F)	SMA (F)	SMA (F)	
	CW Peak Ec) W) nsec)	dB) 1.5:1 CW 40 Peak 400 W) 100 msec) 400 tions 200/2-79 SMA (F)	12) 1.0 - 2.0 1.2 - 1.4 dB) 0.7 1.5:1 1.3:1 CW 40 30 Peak 400 300 EC) 10 20 W) 100 10 W) 100 500 msec) 400 400 See Page 318 200/2-79 200/2-10 SMA (F) SMA (F)	

PACKAGE TYPE & DIMENSIONS


Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

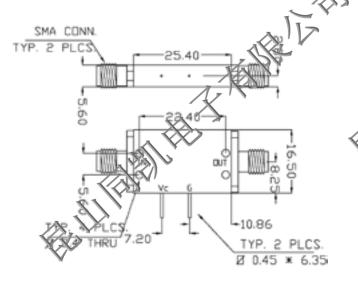
Limiters Series LIM Narrowband Specifications

M N	_ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
DEDECTIVATION	
MERFURINANCE	CHARACTERISTICS

7 2 7 2 7				
MODEL		LIM-89-15	LIM-812-50	LIM-2564-00
Frequency Range (GNz)		8.4 - 9.6	8 - 12	1.28 - 1.4
Insertion Loss, max	(dB)	2.9	2.2	0.6
VSWR, max		2.9:1	1.8:1	1.5:1
neut Power, max CW		15	5	30
(Ŵ)	Peak	50	50	300
Pulse Width, max (µSec)		20	10	25
Duty Cycle, % max		5.0	10	13
Flat Leakage, max (n	nW)	64	100	32
Recovery Time, max	(nsec)	500	500	200
Environmental Cond	itions		See Page 318	
Package Type		200/2-79	200/2-79	200-2564
Inpun.		SMA (F)	SMA (F)	SMA (F)
Connectors	out	SMA (F)	SMA (F)	SMA (F)
A 4 7		· · · · · · · · · · · · · · · · · · ·		

PACKAGE TYPE & DIMENSIONS

#


Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

Switched Limiters - Specifications

A PARFORMANCE CHARACTERISTICS

_					
	Frequency Range , min (GHz)		LIM-2019-50	LIM-2019-80	
			1.4	3.1 - 3.5	
I			1.1 (© 20 V reveres bias)	1.2 (@ 0 V reveres bias)	
A	Insertion Los	s, max (ab)	1.1 (6 20 V leveles blas)	1.2 (@ -20 V reveres bias)	
	VSWR, max	*	1.3:1	1.3:1	
	Input Power, max (W) Ave. Peak		25	20	
			250	200	
	Pulse Width, max (µSec.)		150	150	
	Duty Cycle, max %		10	10	
	Flat Leakage,	max (dBm)	+ 20	+ 15	
	Recovery Time, max (µSec)		1	0.350	
	Environmental Conditions		See Pa	age 318	
	Package Type		2019-50	LIMS-200/2	
		input	SMA (F)	SMA (F)	
	Connectors	Output	SMA (F)	SMA (F)	
	V	·	·	A 3 / 1	

PACKAGE TYPE & DIMENSIONS

2019-50

LIMS-200-2

Dimensional Tolerances, unless otherwise indicated: .XX \pm .02, XXX \pm .008

Millimeter Wave Components 18-40 GHz

ATTENUATORS: CURRENT DIĞITAL & VOLTAGE CONTROLLED

General Microwave wide and millimeter-wave attenuators are available in three configurations.

Model 1959 is content-controlled, while the Model D1959, which incorporates a hybrid driver, is voltage-controlled with a linearized transfer function of 10 dB per volt.

The digitally-controlled Model 3499 provides 0.03 dB resolution (11 bits) and switching speed of less than 500 usec.

Each of the three models operates over the full frequency range from 18-40 GHz with a dynamic attenuation range of 50 dB.

See Page 329.

PHASE SHIFTERS

Model 7929 is a MMW Phase Shifter with phase control of 360°, over the entire frequency range of 10 to 40 GHz.

See page 334

SWITCHES: SPST, SP2Y & SP4T

General Microwave milimeter wave switches are available in SPST and SP2T models in a variety of topologies and configurations, e.g., with current-controlled switching, or with integrated TTL compatible voltage drivers, and in both low insertion loss and high isolation models.

All switch models in the series operate over the frequency range from 18-40 GHz; each is capable of handling cw or peak powers up to 1W without performance degradation, and features rise and fall times of less than 10 nsec

See Page 338.

QUADRATURE COUPLER

The Model 7050 3-dB Quadrature Coupler is a 4-port single-section Hoppfer coupler winich operates over the frequency range from 18-40 Chz it features low insertion loss, high isolation, and excellent amplitude and phase balance.

See Page 344.

CUSTOM IMA PRODUCTS: See Page 343.

Models 1959, D1959 Millimeter Wave PIN Diode Attenuator/Modulator

- Current or voluge controlled
- 18 to 40 GHz frequency range
- High performance MIC quadrature hybrid design
- Bigh speed

(WITH INTEGRATED

MODE 1959

The Model 1959 is a current-controlled attenuator/modulator that provides a minimum of 50 dB of attenuation over the frequency range of 18 to 40 GHz.

As shown in figure 1 below, the RF circuit uses two shunt arrays of PIN diodes and two quadrature hybrid couplers. The quadrature hybrids are of a unique CMC microstrip design which are integrated with the diode arrays to yield a minimal package size.

MODEL D1959

The Model D1959 voltage-controlled linearized attenuator/modulator is an integrateo assembly of a Model 1959 and a hybridized driver circuit which provides a nominal transfer function of 10 dB per volt. (See figure 2 below.)

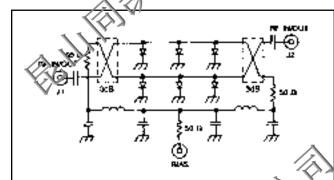
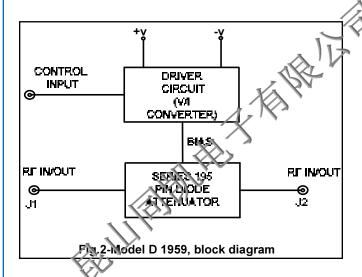
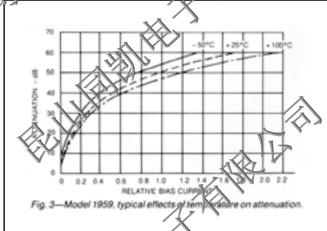




Fig. 1-Model 1959, RF schematic diagram

Models 1959, D1959 Specifications

	FREQUENCY RANGE	INSERTION LOSS	MAX.	ATME	FLATNES AN ATTENUA	SS (± dB) TION LEVELS	UP TO
MODEL	(GHz)	(dB)	VSWR	10 dB	20 dB	40 dB	50 dB
	18-26 5	3.6	- 47				_
1959	25 5 36	4.1	2.2				
	36-40	4.7		4.0			
	18-26.5	4.1	1//	1.3	2.2	3.4	
701959	26.5-36	4.6	2.2				PA
XX	36-40	5.2				X	

ENVIRONMENTAL RATINGS AND AVAILABLE OPTIONS

See page 344.

COMMON TO BOTH MODELS 1959 AND D1959

Mean Attenuation

Range......50 dB

Monotonicity Guaranteed

Power Handling Capability

Without Performance

Phase Shiftsee page 66

MODEL 1939

Rise and Fall Times

Bias Current for Maximum

Attenuation 15 to 70 mA

Temperature Effects See figure 3

MODEL D1959

Accuracy of Attenuation 0 to 30 dB.....

30 to 50 dB......±1.0 dB

Temperature Coefficient ±0.025 dB/°C

Switching Characteristics

Nominal Control Voltage Characteristics

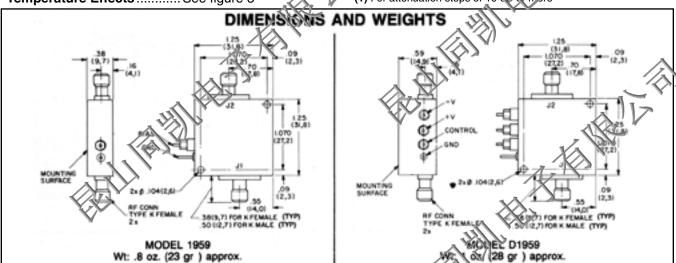
Operating...... 0 to +5V

Modulation Bandwidth

Small Signal.....5 MHz Large Signal2 MHz

Power Supply

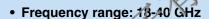
Requirements+12V ±5% 120 mA


–12V 125%, 50 mA

Power Supply

Rejection......Less than 0.1 dB/Volt

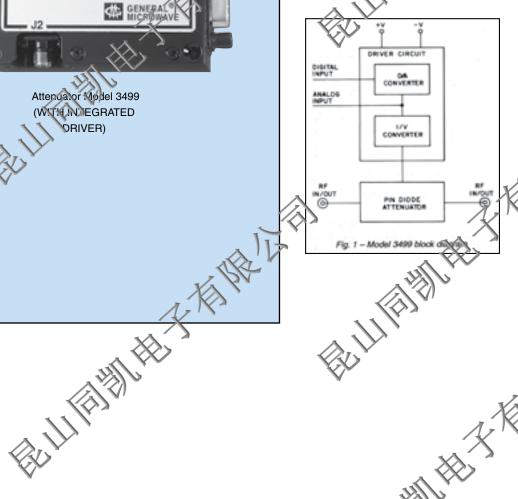
change in either supply


(1) For attenuation steps of 10 cB or more

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

Model 3499 Octave-Band 11 Bit Digital PIN Dicde Attenuator

- 50 dB attenuation range
- 500 nsec switching speed
- 11 Bit bigary programming
- Guaranteed monotonicity
- Absorptive



Attenuator Model 3499 (WITH IN EGRATED ORIVER)

The Moust 3499 Millimeter Wave Digitally Controlled Attenuator provides greater than octave-band performance and wide programming flexibility in a compact rugged package.

The Model 3499 is an integrated assembly of a balanced PIN diode attenuator and a driver circuit consisting of a PROM, a D/A converter and a current-to-voltage converter, as shown in Figure 1. This arrangement provides a high degree of accuracy and repeatability and also preserves the inherent monotonicity of the attenuator.

The Model 3499 offers a 50 dB afternation range, 0.03 dB resolution and switching speed of no more than 500 nanoseconds. It is available with either a strobe/latch or a non-linear current or voltage controlled attenuation capability.

All Fill Hard Land

Model 3499 Specifications

N.				TOIOT	_
· OA		1	. <i>I</i> - L /		- 1
- 74	FFDFU	RMANCE			

	FREQUENCY	MAX. INSERTION LOSS	MAX.	AT		ATNESS (± ENUATION	± dB) I LEVELS U	Р ТО
MODEL	(GNz)	(dB)	VSWR	(0 4B)	20 dB	40 dB	50 dB	60 dB
,	3-26.5	4.1		1/2				
3499	>26.5-36	4.6	2,2	1.3	2.2	3.4	4.0	N/A
11/	>36-40	5.2	11/1/2					212
V //	18-26.5	4.3					4	
3499-60	>26.5-36	4.9	2.2	1.3	2.2	3.4	4.0	5.0
V	>36-40	5.8					1, K	

Mean Attenuation Range

Model 349950 dB Model 3499-6060 dB

Accuracy of Attenuation

0 to 30 dB.....±0.5 dB

30 to 60 (Model 3499-60)... ±1.0 dB Monotonicity Guaranteed

Temperature Coefficient ... ±0.03 dB/°C

Phase ShiftSee page 66

Power Handling Capability

Without Penormance

Degradation......10 mW cw or peak Survey Power (from -40°C to +25°C;

+25°C; see Figure 2 for higher

temperatures) 0.2W average, 5W peak

(1 µsec max. pulse

width)

Switching Time.............. 0.5 µsec max.

Programming Positive true binary

complementary code specify Option 2 To interface with ther logic

families, please contact factory.

Minimum Attenuation

Step

Logic Input

...-0.3 to +0.8V Logic "0" (Bit OFF) Logic "1" (Bit ON)+2.0 to +5. Logic Input Current 1 μA max. +2.0 to +5.0V

..... 0 to 6.4V Analog Input

Power Supply

Requirements.....+12V to +15V, 120 mA -12V to -15V, 50 mA

Power Supply Rejection.....

ess than 0.1 dB/volt change in either supply

OPTION **ENVIRONMENTAL RATINGS**

Operating Temperature

Range......-40°C to +85°C

Non-Operating Temperature

Range -54°C to +100°C

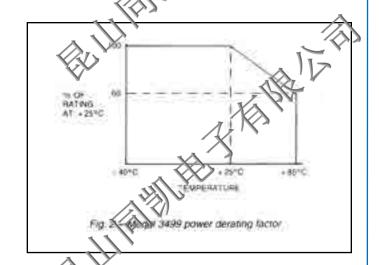
Humidity MIL-STD-202F, Method 103B,

Cond. B (96 hrs. at 95%)

Shock...... MIL-STD-202F, Method 213B,

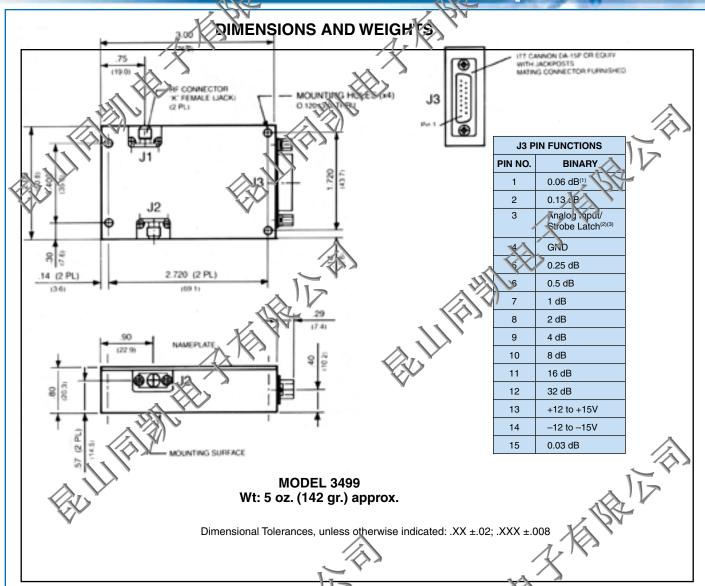
Cond. B (75G, 6 msec)

Vibration MIL-STD-202F, Method 204D,


Cond. B (.06" double amplitude or

15G, whichever is (ess) Altitude MIL-STD-202F, Method 105C,

Cond. B (50,000 ft.)


Temp. Cycling MJL-STD-202F, Method 107D,

nd. A, 5 cycles

Model 3499 Specifications

ACCESSORY FURNISHED

Mating power/logic connector

AVAILABLE OPTIONS

G12

Option No.	Description
2	Complementary programming (logic "0" is Bit ON)
4	Strobe later of data input. Attenuator responds to data input when logic "0" is applied. Attenuator latched to data input when logic "1" is applied.
7	Two type K male RF connectors
10	One type K male (J1) and one type K female (J2) RF connector
G09	Guaranteed to meet Environmental
	Ratings

RoHS Compliant

NOTES:

- 1. The Model 2499 attenuator is an 11-bit digital attenuator. In order to use this device with a lesser number of bits (lower resolution), the user may simply ground the logic pins for the lowest order unused bits. For example, when operated as an 8-bit unit, the Model 3499 would have Pin 15 Pin 1 and Pin 2 connected to ground. All other parameters remain unchanged.
- 2. Normally supplied as an Analog input. Optionally available as a strobe latch function for input data.
- 3. Pin 3 is available to apply a current or voltage to control the attenuator in a non-linear fashion. leave pin as open circuit \$100 used.

Model 7929 MM Wave 360° Phase Shifter

The Model 7929 is a MMW PIN door phase shifter covering a frequency range from 18 to 40 GHz providing a full 360° range of variable phase shift.

PHASE SHIFT

Phase shift is achieved by utilizing the RF vector modulator approach shown in Figure 2. The 3-dB hybrid coupler divides the RF signal into two quadrature components which are then biased in proportion to the sine and cosine of the desired phase shift. The signals are then combined in-phase to yield desired output.

ACCURACY

Improved phase accuracy and PM/AM performance are achieved by using double-balanced bi-phase linear amplitude modulators. In the operating band, overallphase accuracy is better than 15°. Switching speed is better than 500 nsec. 川原淵川港

- 18 to 40 GHz
- 360° Range
- 0.35° Incremental Resolution
- High Speed
- Digitally Programmable (10 Bits)
- Guaranteed Monotonicity
- Hermetically Sealed

Phase Shifter Model 7929

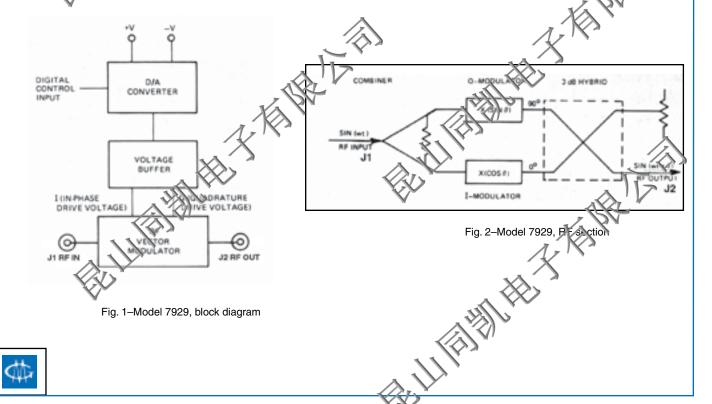


Fig. 1-Model 7929, block diagram

J2 RF OUT

SHIFTER SPECIFICATION

FREQUENCY RANGE (GHz)	INSERTION	VSWR	ACCURACY	PM/AM
	LOSS (Max.)	(Max.)	(Max.)	(Max.)
18.6 40 0	15.0 dB	J1 INPUT: 2.5:1 J2 OUTPUT: 2.2:1	±15°	±2.0 dB

REPFORMANCE CHARACTERISTIC

Phase Shift	Y.V	,
√Range	. 360∜in	1,024 steps
Variation	. 0.1°/°C	

Control Input 10 Bit TTL

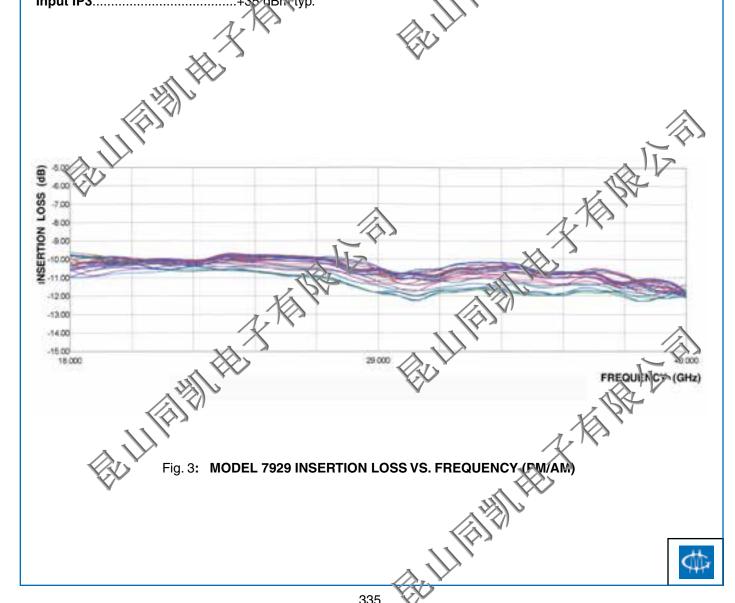
Switching Speed

(50% TTL to within 10° of

Final Phase Value)...... 500 nsec_max Input IP2+60 dBm tvp.

Input IP3.....

Power Handling Capability Without Performance **Degradation**


Survival power

Power Supply

+5V ±5%, 125 mA max Requirements +12 to +15V, 10 mA max

+30 dBm

-12 to -15V, 95 mA max

Model 7929 Specifications

Narrow Band Rhase Shifters

In addition to the standard wide band Phase Shifters, KRATOS General Microwave is offering Narrow Band Phase Shifters, These units are available both as standard catalog units and as customized units meeting specific customer's requirements. The narrow band units have better performances and lower prices.

Frequency Range	Model Number	Phase Accuracy	PM/AM	Insertion Loss
18.0 to 21.4 GHz	7929-NE-18-21	± 6° (max.)	± 1.0 dB	13.0 dB (max.)
27.0 to 31.0 GHz	7929-NB-27-31	± 6° (max.)	± 1.0 dB	13.0 dB (max.)
33.0 to 36.0 GHz	7929-NB-33-36	± 6° (max.)	± 1.0 dB	13.0 dB (max.)
37.0 to 40.0 GHz	7929-NB-37-40	± 10°(max.)	± 1.0 dB	13.5 dE (max.)

ACCESSORY FURNISHED

Mating power/control connector

OPTION (G09) ENWACHMENTAL RATINGS

Operating Temperature

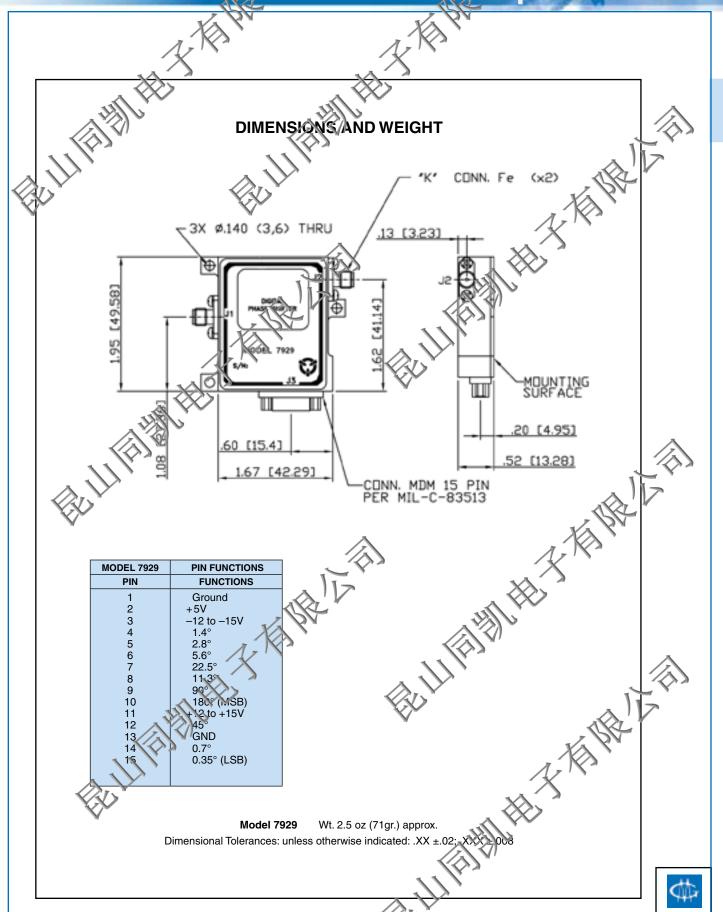
Range-54°C to +95°C

Non-Operating

Temperature Range-65°C to +125°C

AVAILABLE OPTIONS

山原期 H. 子. 梅那 是加州州。 Option No. Description 7 Two K male RF connectors One K male (J1), and one K female (J2) RF 10 connector High Fiel screening 49


(see page 394)

Guaranteed to meet Environmental Ratings **G09**

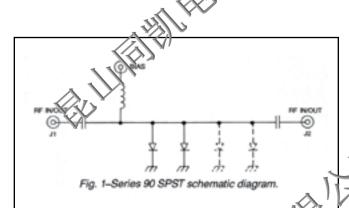
OHS Compliant

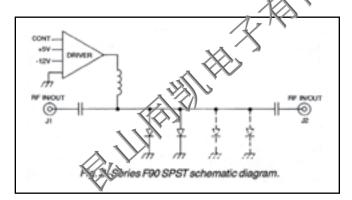
Model 7929 Specifications

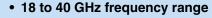
Series 90 Millimeter Wave SPST Switches

SERIES 90

Series 90 switches provide high performance characteristics over the frequency range of 18 to 40 GHz. These miniature sivitches measure only .75" x .95" x .42"


The series uses an integrated circuit assembly of up to four PIN diodes mounted in a microstrip transmission line. The circuit configuration is shown in Fig. 1, below.


Application of a positive current to the bias terminal switches the unit OFF since the diodes are biased to a low resistance value. With zero or negative voltage at the bias terminal, the diodes are biased to a high resistance and the unit is switched ON.


SERIES F90

The Series F90 switches are the same as the corresponding Series 90 models except the units are equipped with integrated drivers as shown in Fig. 2.

The proper current required to switch the unit on OFF is provided by the integral drive which is controlled by an external logic signal. Maximum rise and fall times are less than 10 nsec

- Low VSWR and insertion loss
- Up to 75 dB isolation
- Less than 10 nsec rise and fall times

Switch Model 9013 (DRIVERLESS)

Series 90 SEST Switches Specifications

PERFORMANCE	CHARACTERISTICS
-------------	-----------------

FREQUENCY (GHz)

MODEL NO.(1)	CHARACTERISTIC	18-26.5	26.5-40
9012, F9012	Min. Isolation (dB) Max. Insertion Loss (dB) Max. VSWR (CN)	35 2.2 2.0	30 2.7 2.2
9013*, F9013*	Min. Isolation (dB) Max. Insertion Loss (dB) Max VSWR (ON)	55 2.5 2.0	50 3.0 2.2
9014, F9014	Min. isolation (dB) Max. Insertion Loss (dB) Max. VSWR (ON)	75 2.8 2.2	70 3.5 2.2

SWITCHING CHARACTERISTICS (2)

POWER HANDLING CAPABILITY

Without Performance

Degradation 1W cw or peak
Survival Power 2W average, 75W peak
(1) (Sec max. pulse width)

CONTROL CHARACTERISTICS

Control Input

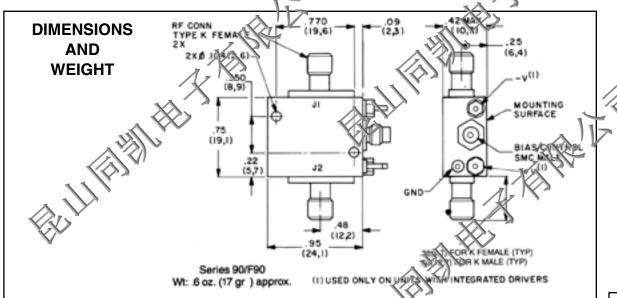
*Special-order product. Consult factory before ordering.

switch OFF.

POWER SUPPLY REQUIREMENTS

Driverless Units

For rated isolation+35 mA For rated insertion loss –10V


Units With Integrated

Drive(s.).....+5V ±2%, 65 mA −12 to −15V, 20 mA ENVIRONMENTAL RATINGS AND AVAILABLE OPTIONS

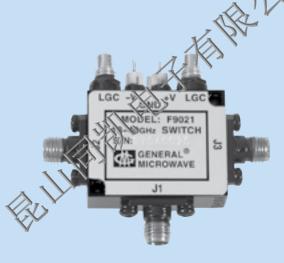
See page 344

(1) Models prefixed with "F" are equipped with integrated TTL-compatible drivers; models without the "F" prefix are current controlled units and are furnished without drivers.

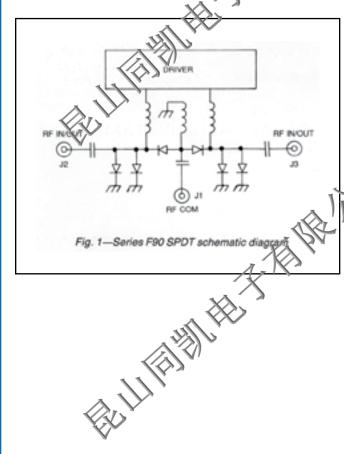
(2) For driverless units, shaped current pulses must be provided by use.

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

Series 90 Millimeter Wave SP2T Switches


REFLECTIVE SP2T SWITCHES

Series 90 SP2T switches use an integrated assembly of PIN diodes mounted in a microstrip transmission line in a series-shunt areal gement as shown in Figure 1.


When applying positive current (by the driver), the associated port is OFF since the corresponding short diodes are biased to a low resistance and the series diode to a high resistance. With negative current at the bias terminal converse conditions are established and the port is ON. All models are supplied with integrated drivers. Standard units are supplied with logic that turns a port ON with the application of a logic "0" control signal. Maximum rise and fall times are less than 10 nsec.

- Rise and fall times less than 10 nsec
- Low VSWR and insertion loss
- Up to 65 dB isolation

Switch Model F9021 (WITH INTEGRATED DRIVER)

Series 90 SP2T Switches Specifications

PROGRAMANCE CHARACTER

	FREQUEN	ICY (GHz)	
MODEL NO.	CHARACTERS	18-26.5	26.5-40
F9021	Min. Isolation (05) Max. Insertion Loss (dB) Max. VS(VA (ON)	30 3.0 2.1	20 3.6 2.3
F9022	Min. Isolation (dB) Max insertion Loss (dB) Max. VSWR (ON)	45 3.2 2.2	40 4.0 2.3
F9023	Min. Isolation (dB) Max. Insertion Loss (dB) Max. VSWR (ON)	65 3.5 2.3	55 4.5 2.5

Rise and Fall Times 10 nsec max Switching Time 25 nsec ma Repetition Rate......20 MHz roax

Power Handling Capability

Without Performance

SERIES F90

Degradation..... W cw or peak

Survival Power 1W average, 75W peak

(1 µsec max. pulse width)

TERISTICS CONTROL CH

Control Input

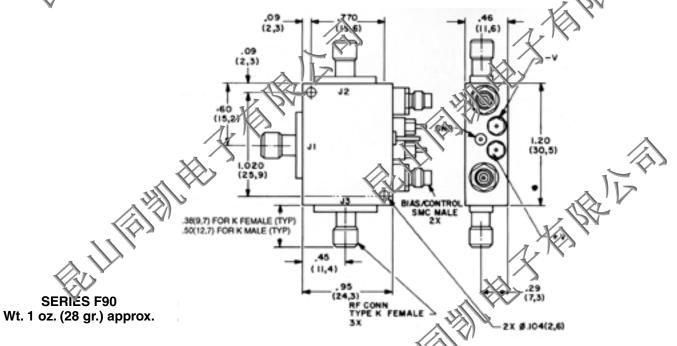
Impedance TTL, advanced Schottky,

one unit load. (A unit load is 0.6 mA sink current and

20 µA source current.) Control Logic

Logic "0" (-0.3 to +0.8V) for port ON and Logic "1" (+2.0 to +5.0 V) for port

ÒFF.


Power Supply

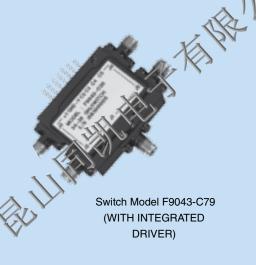
Requirements..... . +5V ±2%, 75 mA

-12 to -15V, 50 mA

ENVIRONMENTAL RATINGS AND AVAILABLE OPTIONS

See page 344

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008


Series 90 Millimeter Wave SP4T Switches

NON-REFLECTIVE SP4T SWITCHES

Series 90 SP4T switches use an integrated assembly of PIN diodes mounted in a microstrip transmission line in an all shunt arrangement.

All models are supplied with integrated drivers. Standard units are supplied with logic that turns a poon on with the suplication of a logic "0" control signal. Maximum On/Off times are less than 50 nsec

- 32 to 36 GHz frequency range
- Low VSWR and insertion loss
- Non-Reflective
- 55 dB isolation

是加斯根人

PERFORMANCE CHARACTERISTICS

	相子相		Switch Model F9043-C79 (WITH INTEGRATED DRIVER)
*	PERF	ORMANCE CHARACTERIS	STICS
	<u> </u>		FREQUENCY (GHz)
√ √ √ √	MODEL NO.	CHARACTERISTIC	32-36
~	F9043-C79	Min. Isolation (dB) Max. Insertion Loss (dB) Max. VSWB (ON/OFF)	55 5.9 2.7:1
		AND IN THE INFORMATION OF THE IN	測機大樹

Series 90 SP4T Switch **Specifications**

Switching Speed

On Off Times 50 nsec max.

Power Handling Capability
Without Performance Degradation

Convnon Port 1W cw or peak

'Oii'' Port...... 100 mW cw or peak

vival Power

"On" Port1W average, 75W peak

(1 µsec max. pulse width)

Common Port...... 1W average, 75W peak (1 µsec max. pulse width)

peak (1 µsec max. huse width)

Power Supply

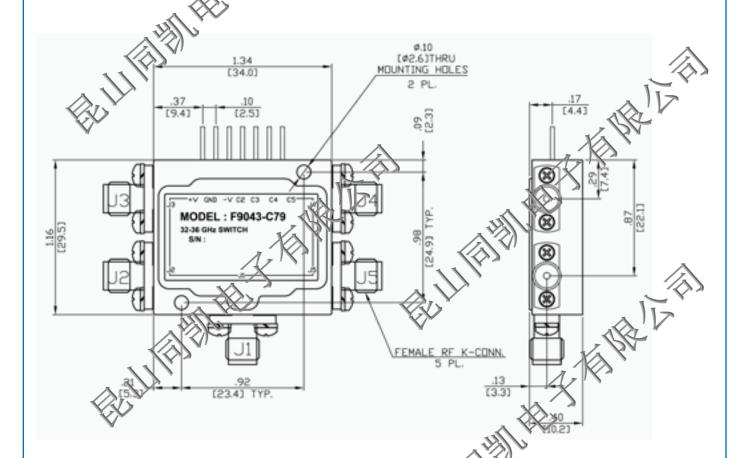
Requirements..... 12V ±5%, 60 mA

CONTROL CHARACTERISTICS

Cortrol Input

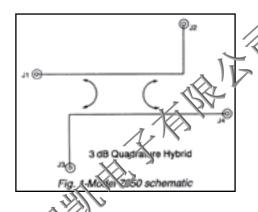
Impedance TTL, advanced Schottky, one unit load. (A unit

load is 0.6 mA sink current and 20 µA source current.)


Control Logic Logic "0" (-0.3 to +0.8V)

for port ON and Logic "1" (+2.0 to +5.0V) for port

OFF.


ENVIRONMENTAL RATING

See page 344

Model 7050 Millimeter Wave 3 dB Quadrature Coupler

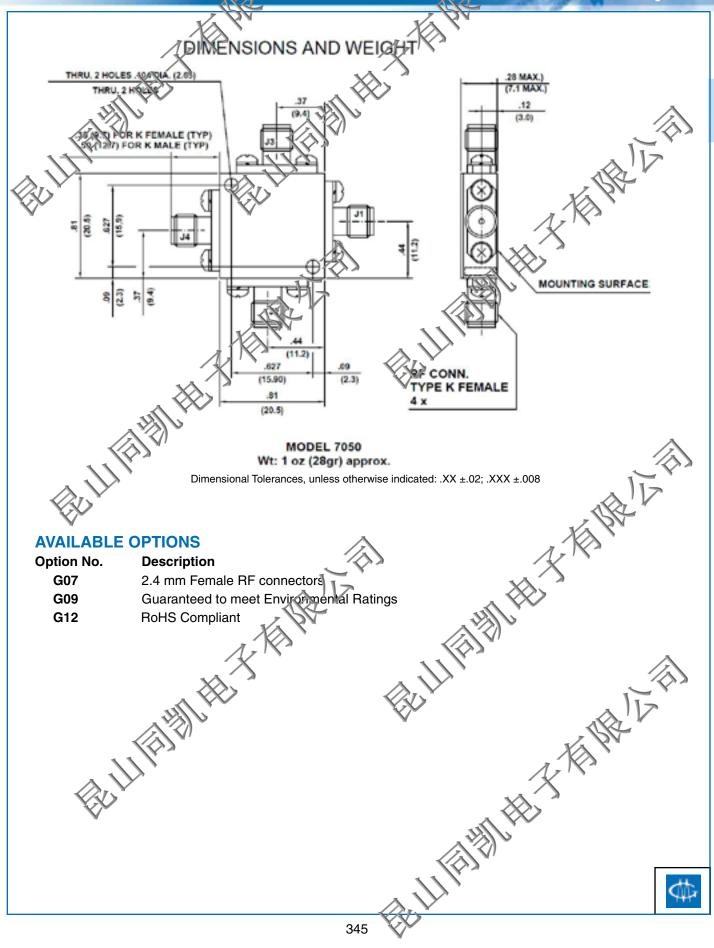
The 3 dB Quadrature Coupler is a four port device covering the frequency range of 18 to 40 GHz. The coupler design is a single section Hopfer coupler which has been optimized to perform in the millimeter frequency range. See Fig. 1. It offers excellent amplitude and phase balance as well as low loss and high isolation. The 3 dB Quadrature Coupler utilizes removable councerters for easy integration into consists. removable connectors for easy integration into cooxial millimeter wave systems.

Frequency range: 18-40 GHz

Low insertion loss

High isolation

Removable connectors



Coupler Model 7050

	x. X	A TOP TO THE PROPERTY OF THE P
	A A	< >
	SPECIFICATIONS	
	Frequency (GHz)	18-40
KA Y	Min. Isolation (oB)	14
A X	Max. Insertion (oss (dB)	1.75
	Max. VSVR	1.8
**	Ampiltude Balance (dB)	±20
THI YOU	Phase Palance deg.	±10>
	Power Handling, operating and survival, cw or peak	2W
	Environmental Ratings	See page 344
	THE STATE OF THE PARTY OF THE P	
344	XX	

Model 7050 Millimeter Wave 3 dB Quadrature Coupler

Millimeter Wave Catalog Component Catalog Specifications

OPTION (G09) ENVIRONMENTAL RATINGS

Operating Temperature Range

Series 90 🗳

With Drivers.......-65°C to +110°C
Without Drivers.....-65°C to +125°C

Model 1959.....-54°C to +125°C

Model D1959....-54°C to +110°C

Model 7050....-65°C to +125°S

Non-Operating Temperature

Range......-65°C to +125°C

MIL-STD-202F, Method 103B, Cond. B (96 hrs. at 95%)

Vibration MIL-STD-202F, Method 204D,

Cond. B (.06" double any littede or 15G, whichever is less)

Altitude MIL-STD-202F, Method 105C,

Cond. B (50,000 ft.)

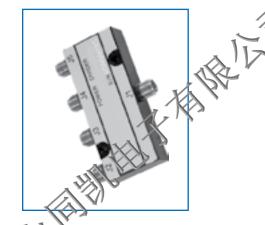
Temp. Cycling MIL-STD-202F, Method 107D, Cond. A. Scycles

AVAILABLE OPTIONS

		1=		1731/1	
AV	AILABLE OPTIONS		MOD	ELOX/)	
Option No.	Description	Current-Controlled Attenuator	D1959 Voltage-Controlled Attenuator	9012, 9013, 9014 F9012, F9013, F9014 SPST Switches	F9021, F9022 F9023 SP2T Switches
3	SMA female bias/control connectors	¥		V	V
7	Type K male RF connectors	Z	V	V	V
7 A	J1 type K male, J2 and J3 type K female				V
7B	J1 type K male; J2 and J3 type K male				V (2)
9(2)	Inverse control logic; logic "0" for port OFF and logic "1" for cort ON			V	WIV
10	One type K male (J1) and one type K female (J2) RF connector	¥ .		1 1 X	S.
27	Single-port toggle control; logic "0" connects J1 to J2			***	Z
33	EMI filter solder-type bias/control terminals	128		THE STATE OF THE S	V
61	20 dB/volt transfer function with 0 to +3V control signal input	***	V		
62	±15 volts operation				
64	SMC male bias/control connectors	V			
64 A	SMB male bias/conol connectors	¥	Z	V X	pr
G09	Guaranteed to meet Environmental Ratings	V	V	W/X N	V
G12	Rolls Compliant	V	V		V

⁽¹⁾ See page 329 for Model 3499 digital attenuator.

⁽²⁾ Not applicable for units without drivers.


Milimeter Wave Components Custom Integrated Microwave Assemblies

CUSTOM MILLIMETER WAVE ASSEMBLIES

KRATOS General Microwave has developed and produced various custom Millimeter Wave Integrated Microwave Assemblies (IMAs). The following are some examples of products we have developed:

- 1. Attenuator (Fig. 1)
- 2. One to four Power Divider (Fig. 2)
- Transmitter Assembly (Fig 3)
- Receiver Assembly (Fig. 4)

Millimeter Wave Power Divider

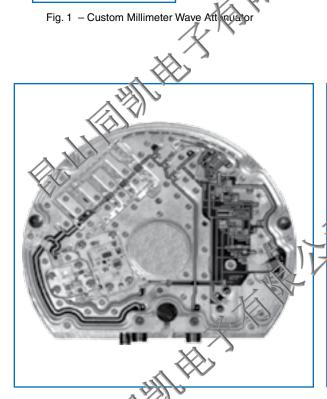
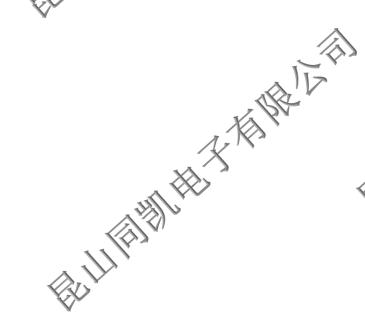


Fig. 3 -Millimeter W Transmitter Assembly

Fig. 4 –Millimeter Wave Receiver Tasken

Microwave Sources

General Microwave Corporation Las been a leader in the field of microwave PIN dicde control components for more than 30 years. A natural extension to its product line, microwave oscillators, was launched in 1989. It began with the introduction of an extremely stable (1 PPM/°C) free stability of preferring production of an extremely stable (1 PPM/°C) free stability of preferring time, general Microwave has once again established itself as an industry leader. Its oscillator engineering staff has been recognized as a dynamic, industry force who is willing and quite and to take on and solve today's most demanding problems.


General Microwave offers a broad line of General Purpose Signal Generators, this includes high-performance voltage-controlled oscillators (VCOs), digitally-tuned oscillators (DTOs), frequency locked oscillators (FLOs) and synthesizers in the microwave frequency range. The VCOs and DTOs feature fast-settling time, low post-tuning drift and low phase noise. In addition to General Microwave's standard

catalog products, a wide variety of custom oscillators have been acveloped for demanding airborne receiver, jamming and simulator applications.

This catalog is proof of General Microwave's success. "Includes expanded versions of our general purpose catalog oscillator products and highlights many of the custom oscillators, both military and commercial, that have been successfully developed and manufactured. If your system requirements demand a device which cannot be found in this catalog, do not hesitate to contact General Microwave directly. A sales engineer will be happy to discuss your specific needs.

Modern microwave oscillators utilize a solid state device, such as a transistor or diode, together with a resonant circuit and matching network, to convert DC power to microwave power at a specified frequency. By appropriate choice of these elements, oscillators may be designed for an extremely wide range of applications. In addition, low frequency digital and analog control circuity may be incorporated to provide further flexibility.

展別展展

Microwave Oscillators

DEFINITION OF PARAMETERS

Frequency Settling/Post-Yuning Drift: The maximum deviation in frequency at a given time, following a change in tuning command, relative to the frequency one second after the change in tuning command. The worst-case condition usually occurs for frequency steps from one and of the band to the other. (Results) of a typical measurement are shown in Fig. 1.), Settling time usually refers to the response up to several hundred microseconds, while post-turning-drift usually refers to the variation from several hundred microseconds to as long as several hours.

Modulation Sensitivity Ratio: The ratio between the maximum and minimum slopes of the frequency vs. voltage tuning curve of a VCO over its frequency band. (For a DTO, this is defined at the FM modulation ports)

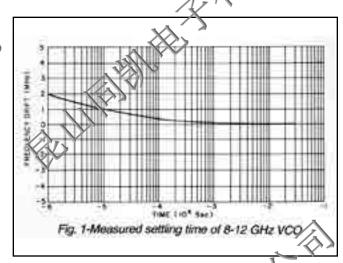
Frequency Deviation Bandwidth: The peak-to-peak frequency deviation obtained for a given peak-to-beak voltage swing at the modulation port of a cor DTO.

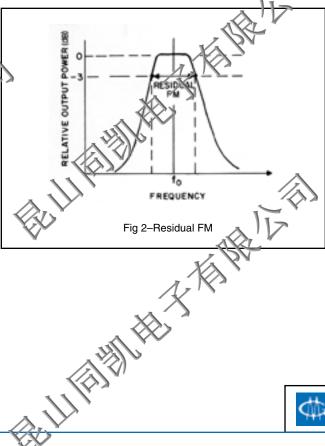
Modulation Bandwidth: The modulation frequency at which the frequency deviation bandwidth of a VCO or DTO decreases by 3 dB relative to the deviation bandwidth at low frequencies.

Phase Noise: The sideband noise level at a given deviation, f_m , from the oscillator frequency, relative to the carrier power level and normalized to a bandwidth of I Hz. From 10 kHz to 100 kHz, the phase noise of a VCO has a nominal 1/f_m³ dependence. Thus, as shown in the figure, the phase noise at 100 kHz is approximately 30 dB lower than that at 10 kHz.

Residua FM: The peak-to-peak frequency deviation of an oscillator at its -3 dBc points, when measured on a spectrum analyzer with a resolution bandwidth of 1 kHz. (See Fig. 2).

Temperature Stability: The total oscillator frequency variation over the rated operating temperature, usually expressed in ppm/°C.


Pulling: The maximum variation in oscillator flexioncy relative to its frequency when operating with a matched load, when the output load is rotated through a full 360° phase change. The peak-to-peak variation in oscillator frequency is approximately twice the pulling figure defined above.


By using the following approximate formula, the pulling figure may be scaled as a function of the VSWR:

$$f peak-to-peak = \frac{f_o}{2 Q_{EXT}} (S - 1/S)$$

where $f_{\rm O}$ is the oscillator frequency, $Q_{\rm EXT}$ is the external Q of the circuit, and S is the load VSWR.

Pushing: The incremental change in compator frequency that results from an incremental change in power supply voltage.

Synthesizers

Microwave Synthesizers

KRATOS General Microwave (KGMI) has developed a broad line of General Purpose Synthesizers to be used in various applications. KGMI has developed a line of high perturbance, broadband Fast Indirect Synthesizers (FIS) to provide a cost-effective solution to the requirements of new systems. Its high speed (a) fast as 1 µses) provides an economical alternative to direct synthesizers for many applications. Because of

its low hase noise, it is an excellent alternate to the much slower and generally less reliable YIG based synthesizer.

To provide optimum solutions for different requirements, KRATOS General Microwave has developed a variety of Fast Indirect Synthesizers (FIS) with different parameter trade-offs: The standard FIS line for fastest tuning speed, the low phase poise line for ELINT applications and the compact FIS line for airborne small size applications.

SELECTION GUIDE SYNTHESIZERS

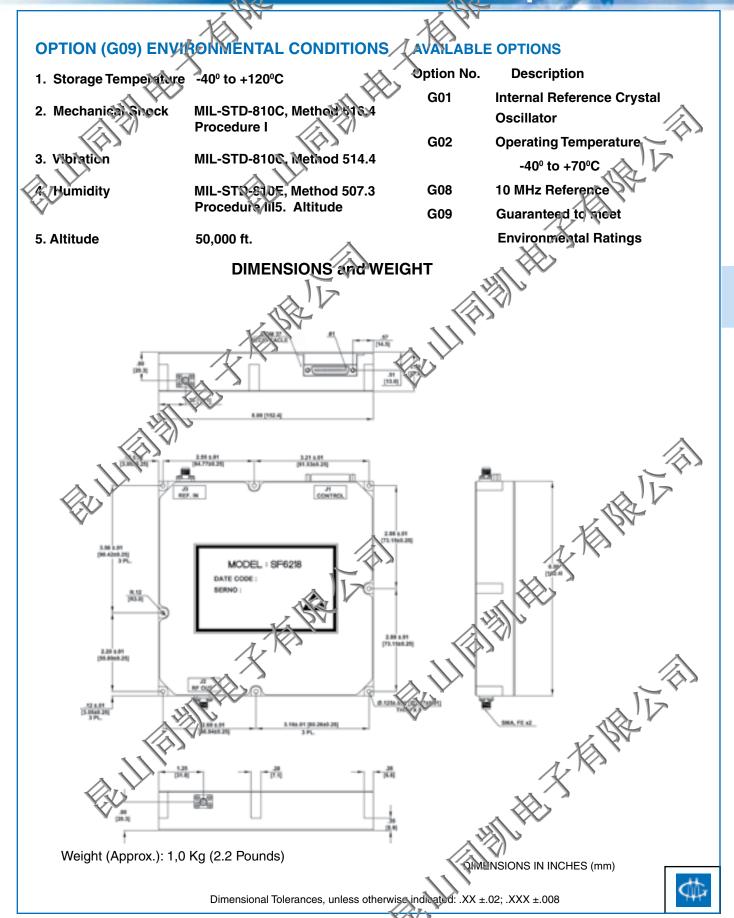
FREQUENCY RANGE (GHz	FREQUENCY RANGE (GHz)							
0.5 2 4 6 12	18 40	MODEL	PAGE	COMMENTS				
	4 17	·		NA P				
0.5 3		SF6053	1	2				
2	18	SF6213	351	1 µsec Indirect Synthesizer				
2	19	SF6219						
2	18	SM6218						
6	18	SM6618	355	1 µsec Indirect Synthesizer with frequency modulation				
2	20	SM6220		. 11-				
2 2	18	SMS6218						
6 —	18	SMS6618	361	Synthesizer with frequency hodulation				
2	20	SMS6220		XX				
0.5 8	THE "	SGP0580	_ ,					
1.25		SGP0120	305	Synthesizer General Purpose				
2	20	SGP0220		Cynansoleon deniera i dipose				
6	18	SGPU913	N	ali				
		SQ0580	372	Narrow Frequency Barlo indirect Synthesizer				
0.25	40	SWE0P240	368	Frequency Extender				
0.5	20	SWE0P520	300	Trequency Exterioer				
0.5 8			375	Custom Synthesizers				

Series SF60 Low Phase Noise Jusec Fast Indirect Synthesizer

	SERIES SF60 SYNTHESIZER SPECIFICATIONS						
	N.	1	SPECIFICATION	V			
	PARAMETER	MODEL SF6053	MODEL SF6218	MODEL SF6219			
1	FREQUENCY RANGE (GHz)	0.5+2 3 (1)	2 to 18 ⁽¹⁾	2 to 19 ⁽¹⁾			
2	ACCURACY	Same (P	PPM) as of the reference cry	ystal oscillator			
3	FREGUENCY AGING	Same (F	PM) as of the reference cry	ystal oscillator			
4	QUTPUT POWER			2/2			
1	Min. (dBm) ⁽¹⁾		10	-18			
42	Variation, over frequency and temperative, max. (dB)		± 2.5				
5	SETTLING TIME , max. (µsec)		1	-18"			
6	SSB PHASE NOISE (2), max (dBc/Hz)	<u> </u>		7			
6.1	@ 100 Hz Offset	(>)	-7/				
6.2	@ 1 kHz Offset	-90	111300	-90 ⁽⁴⁾			
6.3	@ 10 kHz Offset	-110	- 100	-100 ⁽⁴⁾			
6.4	@ 100 kHz Offset	-115	-105	-105 ⁽⁴⁾			
6.5	@ 1 MHz Offset	-115	-105	-105 ⁽⁴⁾			
6.6	@ 10 MHz Offset	-120	-110	-110 ⁽⁴⁾			
7	HARMONICS, max (SEc)	-	-20				
8	SUB-HARMONICS max (dBc)		-50				
9	SPURIOUS, Max (dBc)	-50	-50	-50 ⁽⁴⁾			
10	PULLING & VSWR 2:1 max (kHz)		<1				
11	PUSHING max (kHz/V)		± 1	112			
12	FREQUENCY CONTROL (PARALLEL)	18 BITS	21	BITS			
13	FREQ. STEP SIZE, nominal LSB (kHz) (1)	CDALAS (2)	10	N PV			
14	REFERENCE CRYSTAL OSCILLATOR - EXTENDED INPUT FREQUENCY, (MHz) (5)	ERNAL	100	-			
14.1	INPUT POWER, (dBm)		100 deg				
15	POWER SUPPLY REQUIREMENT, (mA)						
	+12V ±5%						
	-12 N ±5 %		1),800				
	+5V ±5%	1	1,500	\wedge			
16	POWER CONSUMPTION, (W)	1	30				
17	OPERATING TEMP. (C) (1)	(V)	-20 to +70	4 17			
18	OTHER ENVIRONMENTAL PARAMETERS	APPLIC	ABLE FOR AIRBORNE AP	PLICATIONS			

(1) Other values are Optional

DIMENSIONS, inches (mm)


(1) Other values are Optional
(2) With an external reference oscillator with the following phase noise dBc/Hz
(2) 100 Hz Offset: -125
(2) 1 kHz Offset: -140
(3) 10 kHz Offset: -160
(3) Internal Reference Optional
(4) Degraded by 3 dB (2) 18 to 19 GHz
(5) 10 MHz Optional

6 x 6 x 1.1, (152.4 x 152.4 x 2

- (5) 10 MHz Optional

19

	1,1	2)	1	- X			
Pin Assignment for Connecto 11							
- Miles							
	<u> </u>	Pin Assignment for					
1/(1)	Pin No.	Signal Name	Pin No.	Signal Name	113		
	1	Stro.\ne	20	+12V	AST		
ØJ> ^V	2	12V	21	+12V	1/2 1/2		
	3	GND	22	GND	, 1		
	4	+5V	23	+5V	/X ' \		
	5	+5V	24	GND	XX.		
	6	GND	25	-12V			
	7	-12V	26	Frequency Bit	\		
	8	Frequency B t 1	27	Frequency bit 2			
	9	Frequency Bit 3	28	Frequency Bit 4			
	10	Frequency Bit 5	29	Frequency Bit 6			
	11/	Frequency Bit 7	30 🔷	Frequency Bit 8			
	12	Frequency Bit 9	31	Frequency Bit 10			
A	(3)	Frequency Bit 11	32	Frequency Bit 12			
	> 14	Frequency Bit 13	33	Frequency Bit 14			
	15	Frequency Bit 15	34	Frequency Bit 16			
11/1/2	16	Frequency Bit 17	35	Frequency Bit 18 (2)			
	17	Frequency Bit 19 (2)	36	Frequency Bit 20 (2)	113		
	18	N.C. ⁽¹⁾	37	N.C. ⁽¹⁾			
	19	Lock Indicator			12 80		
N. A.	not be c	actory use only. Ali N. onnected Model SF6053 - Not C	7		(A)		

SF66 (2) For Model SF6053 Not Connected

最加加州

Series SM60 1µsec Fast Indirect Synthesizer With Frequency Modulation

High Speed: 1 µsec

Wide Frequency Flange: 2 to 18 GHz

Modulation Span: 1 GHz

Analog & Digital Modulation Input

• Small Size

Nigh Reliability

Severe Environmental Condition

ninesizer Model SM6218

是川州利根

Series SM60 Low Phase Noise Fast Indirect *y*nthesizer

KRATOS General Microwave has enhanced the the series SF60 fast, broadband, indirect synthesizer by adding a modulation function. With this function, he synthesizer is well suited for use in various test systems where the signal output of the signal generalor needs to be modulated rather than be just a CW signal.

The modulation input can be an analog voltage or a digital signal. This provides the system designer with more flexibility in his act lication and possibilities for complex modulation options. Fig. 1 is the spectrum of the output signal with a 1 MHz sine-wave modulation input. The output frequency span is about 900 MHz.

Of special importance is the fact, that this synthesizer remains fully locked even during frequency modulation. As a result of it, the high frequency accuracy and other high performances of the synthesizer are kept all of the time. For this reason, in this synthesizer there isn't the "movement" of the center frequency nor the problem of non linearized modulation.

APPLICATIONS

The Model SM6218 Fast Synthesizer, with Frequency Modulation capability, has been developed as an enhancement to the existing Series SF60 1 usec, CW Synthesizer family. It offers a higher performance and cost effective alternative to signal generators currently used in various applications such as Electronic Warfare (EW), Simulators, Tess Systems and especially those which require improved requency accuracy, phase noise and frequency moculation capabilities. In addition, the Model SM6218 design allows the flexibility to customize .str.ents performance to specific application requirements

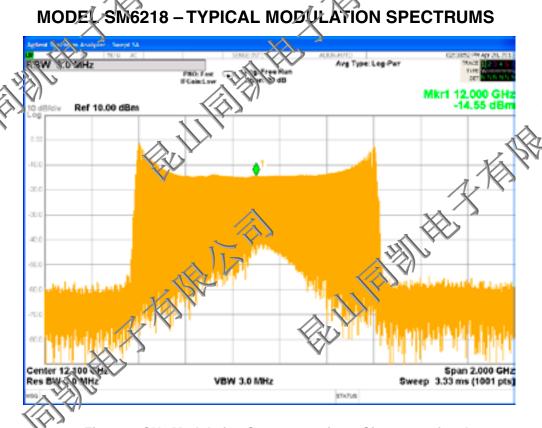
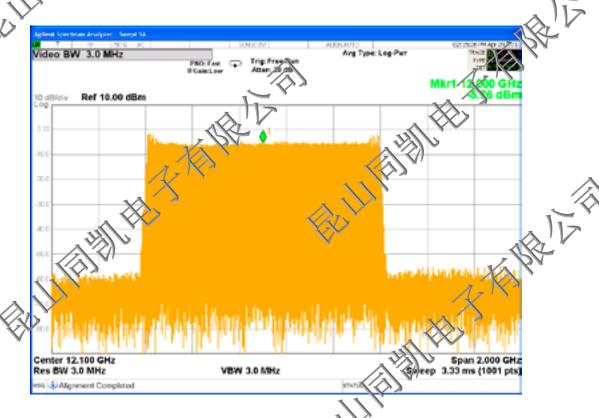



Fig. 1 - 1 GHz Modulation Spectrum using a Sine wave signal

4

RIES SM60 SYNTHESIZER SPECIFICATIONS

	A 1 .	SPECIFICATION - MODEL			
	PARAMETER	SM6218	SM6618	SM6220	
1	FREQUENCY RANGE (GHz)	2 to 18 ⁽¹⁾	6 to 18 ⁽¹⁾	2 to 20 ⁽¹⁾	
2	ACCURACY	Same (PPM)	as of the refere	ence crystal oscillator	
3	FREQUENCY AGING	Same (PPM)	as of the refere	ence crystal oscillator	
4	OUTPUT POWER				
4.1	Min. (dBm) (1)		10	-1812	
4.2	Variation, over freq. at a given temp., max. (dB)		±1.5		
4.3	Variation, over temperature, max. (dB)		±2.5	- 1	
5	SETTLING TIME , max. (µsec)				
6	SSB PHASE NOISE , max (dBc/Hz) (4)		-A (XX)		
6.1	@ 100 Hz Offset		-72		
6.2	@ 1 kHz Offset		-85		
6.3	@ 10 kHz Offset	111,	-97		
6.4	@ 100 kHz Offset		-97		
6.5	@ 1 MHz Offset	K.V	-97		
6.6	@ 10 MHz Offs.t	*	-100		
7	HARMONICS, max (dBc)		-30		
8	SUB-HAPMONICS, max (dBc)		NA	4	
9	SPURICUS, max (dBc) (2)		– 55		
10	FREQUENCY CONTROL (PARALLEL)		18 BITS	15	
11 🌾	FREQ. STEP SIZE, nominal LSB (kHz) (1)		100		
12	REFERENCE CRYSTAL OSCILLATOR - EXTERNA	L (3)		1/2/2	
12.1	INPUT FREQUENCY, (MHz) (5)		100		
12.2	INPUT POWER, (dBm)		0/±3/		
13	MODULATION				
13.1	Bandwidth, (MHz)	2	Oc to 10		
13.2	Frequency Deviation, min. (MHz)		± 500		
13.3	Sensitivity control (3 levels pus Mod. OFF)		2 BITS	_	
13.4	Digital Modulation Control		10 BITS	///	
13.4	Digital Sensitivity no minal (MHz/bit)		1, 1/4, 1/16, Mo	od. OFF	
13.5	Analog Control (V)	VV	±1		
13.6	Analog Sensitivity, nominal (MHz/V)	5	500, 125, 30, M	od. CE	

- (1) Other values are available. Please contact Sales.
- (2) Spurious level is guaranteed during modulation at OFF state. When modulation is set to ON, the spurious level is -50 dBc typical.
 (3) Internal Reference Oscillator is optional
- (3) Internetl' Reference Oscillator is optional
 (4) With an external reference oscillator with the following phase noise dBc/Hz

 - @ 1 kHz Offset: -140
 - @ 10 kHz Offset: -155
 - @ >100 kHz Offset: -160
- (5) 10 MHz Option

SENIES SF60 SYNTHESIZER-SPECIFICATIONS

SPECIFICATION - MODEL					
	PARAMETER	SM6218	SM6618	SM6220	
14	POWER SUPPLY REQUIREMENT, max. (A)			4	
14.1	+12V to +15V		3.2		
14.2	-12V to -15V		0.45		
14.3	+5V ±5%		2.1	K SV	
16	OPERATING TEMP. (°C) (1)		-20 to +70		
16	OTHER ENVIRONMENTAL PARAMETERS	APPLICABLE FO	OR AIRBORNE	APPLICATIONS	
17	DIMENSIONS, Inches (mm)	6.48 (164.6)	x 6.23 (1.53 2) x	1.24 (31.5)	

(1) Other Parameters are Optional

OPTION (G09) ENVIRONMENTAL CONDITIONS

1. Storage Temperature -40° to +120°C

2. Mechanical Stock MIL STD-202F, Method

213B, Cond. B (75G, 6 msec)

3. Vibration MIL STD-202F, Method

204D, Cond. B (.06" double amplitude

or 15G, whitchever is less)

4. Humdity MIL STD-202F, Method

103B, Cond. B (96 hrs. at 95%)

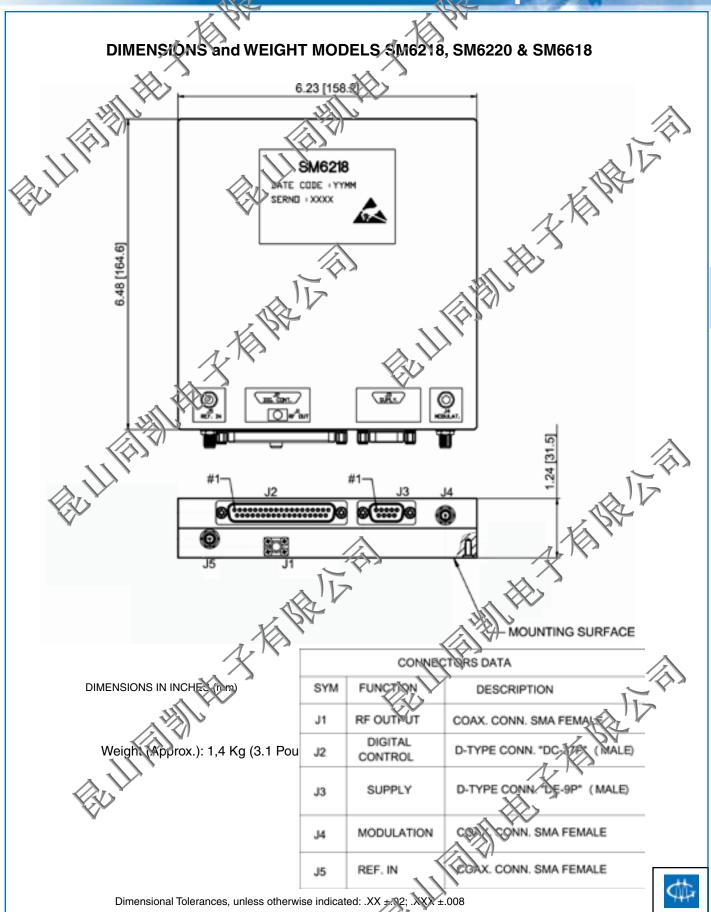
5. Altitude MIL-STD-202F, Method 105C, Cond. B

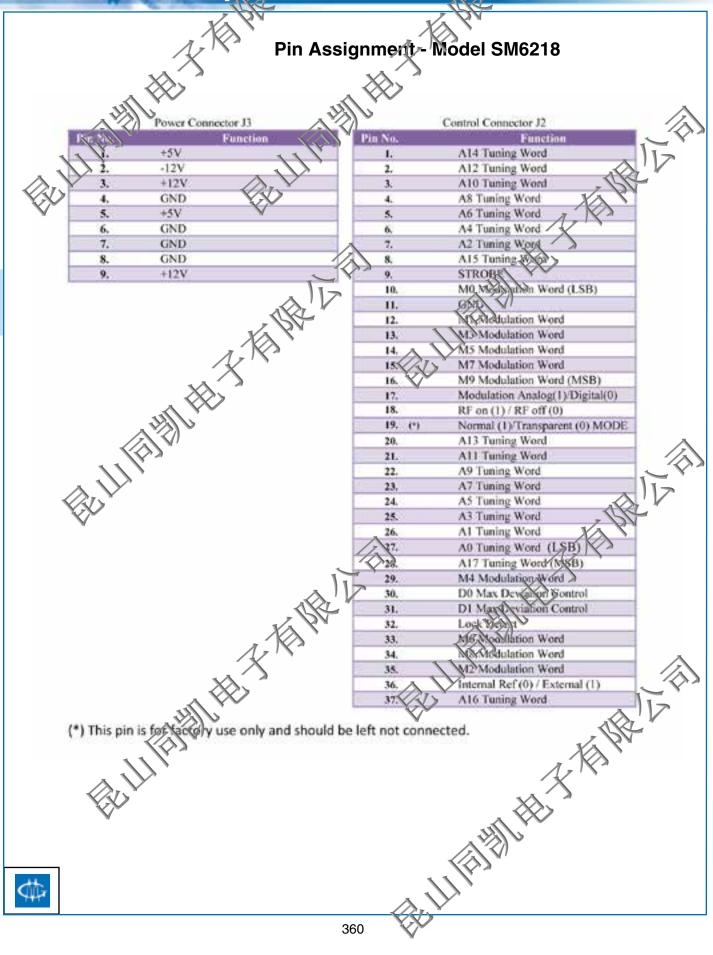
(50,000 ft.)

AVAILABLE OPTIONS

Option No. Description

G01 Internal Feterence Crystal Oscillator


G02 Operating Temperature


-40° to +70°C

G08 10 MHz Reference

G09 Guaranteed to meet Environmental Ratings

Series MS60 Indirect Synthesizer With Frequency Modulation

- Wide Frequency Range: 2 to 18 GHz
- Modulation Span: 1 GHz
- Analog & Digital Modulation Input
- Small Sixe
- High Reliability

Synthesizer Model SMS6218

Religible 1. The second of the

Series SMS60 Low Phase Noise Fast Indirect Synthesizer

KRATOS General Microwave has intreduced the the series SMS60 synthesizer with modulation capabilities. With this function, the synthesizer is well suited for use in various test systems where the signal output of the signal generator needs to be modulated.

The modulation input can be an analog voltage or a digital signal. This provides the system designer with more flexibility in his application and possibilities for complex modulation options.

The modulation input can be an analog voltage or a digital signal. This provides the system designer with more flexibility in his application and possibilities for complex modulation options.

APPLICATIONS

Model SMS6218, Synthesizer with Frequency Modulation capability, was developed as a high performance, cost effective source for signal generators and for Test Systems.

Series SMS60 Specifications

SENTS SMS60 SYNTHESIZER CIFICATIONS

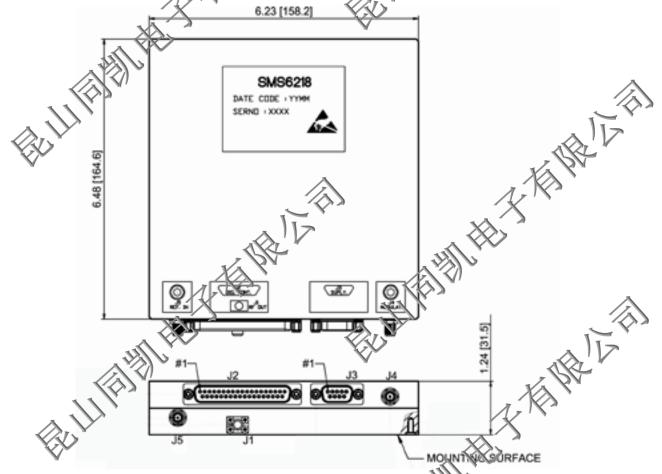
		SPECIFICATION - MODEL		
	PARAMETER	SM36218	SMS6618	SMS6220
1	FREQUENCY RANGE (GHz)	2 to 18 ⁽¹⁾	6 to 18 ⁽¹⁾	2 to 20 ⁽¹⁾
2	ACCURACY	Same (PPM)	as of the refere	ence crystal oscillator
3	FREQUENCY AGING	Same (PPM)	as of the refere	ence crystal oscillator
4	OUTPUT POWER			
4	Min. (dBm) (1)		10	-1812
4.2	Variation, over freq. at a given temp., max. (dB)		±1.5	
4.3	Variation, over temperature, max. (dB)		±2.5/	X / X
5	SETTLING TIME (µsec)		510 ±10	
6	SSB PHASE NOISE , max (dBc/Hz) (4)		7 (%)	
6.1	@ 100 Hz Offset		1111112-72	
6.2	@ 1 kHz Offset	4	-85	
6.3	@ 10 kHz Offset	11	-97	
6.4	@ 100 kHz Offset		-97	
6.5	@ 1 MHz Offset		-97	
6.6	@ 10 MHz Offset	*	-100	
7	HARMONICS, max (dBc)		-30	
8	SUB-HARMONICS, max (dBc)		NA	_
9	SPURIOUS, max (dBc) (2)		– 55	
10	FREQUENCY CONTROL (PARALLEL)		18 BITS	
11	FPEO. STEP SIZE, nominal LSB (kHz) (1)		100	
12	REFERENCE CRYSTAL OSCILLATOR - EXTERNA	L ⁽³⁾		1/2/2/2
12.1	INPUT FREQUENCY, (MHz) (5)		100	7
12.2	INPUT POWER, (dBm)	> >	0 ±2/	X . ,
13	MODULATION			A
13.1	Bandwidth, (MHz)		Do:to./0)
13.2	Frequency Deviation, min. (MHz)		≥ 500	
13.3	Sensitivity control (3 levels plus Mod. OFF)		2 BITS	A
13.4	Digital Modulation Control		10 BITS	1//
13.4	Digital Sensitivity, noticinal (MHz/bit)		1, 1/4, 1/16, Mo	od. OFF
13.5	Analog Control	VV	±1	
13.6	Analog Sensitivity, nominal (MHz/V)	5	500, 125, 30, M	od. OF

- (1) Other values are available. Please contact Sales.
 (2) Spurious level is guaranteed during modulation at OFF state. When modulation is set to ON, the spurious level is 50 dBc typical.
- (3) Internal Reference Oscillator is optional
- (3) Internal Reference Oscillator is optional
 (4) With an external reference oscillator with the following phase noise dBc/Hz
 @ 100 Hz Offset: -125
 @ 1 kHz Offset: -140
 @ 10 kHz Offset: -155
 @ >100 kHz Offset: -160

Series SMS60 Specifications

BERIES	SFS60	SYNTHE	SIZERS	PECIFICATIONS
		O		

		A, K	SPEC	IFICATION - MO	DDEL
		PARAMETER	SMS6218	SMS6618	SMS6220
	14	POWER SUPPLY REQUIREMENT, max. (A)	\Diamond		
	14.1	1997 to +15V		3.2	\wedge
	14.2	-12V to -15V		0.45	
	14.3	+5V ±5%		2.1	117
	15	OPERATING TEMP. (°C) (1)		-20 to +70	1 TO
3	6	DIMENSIONS, Inches (n.m.)	6.48 (164.6)	x 6.23 (158.2)	1.24 (31.5)


(1) Other Parameters are Optional

AVAILABLE OPTIONS

Option No. Description

G01 Internal Reference Crystal Oscillator

DIMENSIONS and WEIGHT MODELS SMS6218, SMS6220 & SMS6618

DIMENSIONS IN INCHES (mm)

Weight (Approx): 1,4 Kg (3.1 Pounds)

Dimensional Tolerances, unless otherwise indicated: XX \pm .02; .XXX \pm .008

Series SMS60 Specifications

Pin Assignment - Model SMS6218

	Power Connector J3	X
Mara	Function (VIII)	-
(/) 1.	+5V	
2.	-12V	
3.	+12V 11	
4.	GND .	
5.	+5V_/>7\	-1
6,	GND X-X	
7.	GND V	- 3
8.	GND	
9.	+12V	-98

	8.	GND
	9.	+12V
		1. 杨枫儿
	CONNEC	TORS DATA
SYM	FUNCTION	DESCRIPTION
J1	RF OUTPUT	COAX. CONN. SMA FEMALE
J2	DIGGRAZ CONTROL	D-TYPE CONN. "DC-37P" (MALE)
	SUPPLY	D-TYPE CONN. "DE-9P" (MALE)
J4	MODULATION	COAX. CONN. SMA FEMALE
J5	REF. IN	COAX. CONN. SMA FEMALE

1. 2. 3. 4. 5.	+5V -12V +12V GND	Pin No. 1. 2. 3.	A14 Tuning Word A12 Tuning Word A10 Tuning Word
2. 3. 4. 5.	-12V +12V	2.	A12 Tuning Word
3. 4. 5.	+12V		
4. 5.		3.	A 10 Tuning Word
5.	GND 1		Ato tuning word
		4.	A8 Tuning Word
6	+5V_//	5.	A6 Tuning Word
Mr.	GND	6.	A4 Tuning Word
7.	GND	7.	A2 Tunip@ Work
8.	GND	8.	A15 Tuning Word
9.	+12V	9.	STROBE
		1	More More (LSB)
			4 GND
	11-	4	MI Modulation Word
	$\Delta^{1}V$		M3 Modulation Word
	W.		M5 Modulation Word
	VA PV	1.5	The state of the s
	· (X)	1/2)	M7 Modulation Word
	1,18"		M9 Modulation Word (MSB)
CONNEC	TOPS NATA	4	Modulation Analog(1)/Digital(0)
V		- A	RF on (1) / RF off (0)
FUNCTION,	DESCRIPTION	19. (*)	Normal (1)/Transparent (0) MODE
· Iler	<u> </u>	20.	A13 Tuning Word
F ONTPUT	COAX CONN SMA FEMALE	21.	All Tuning Word
	COPY. CONN. SMA PEMALE	22.	A9 Tuning Word
DIGITAL	D. TYPE CONN. "DC. 37P" (MALE)	23.	A7 Tuning Word
CONTROL	D-TTPE CONN. DC-37P (MALE)	24.	A5 Tuning Word
\searrow		25.	A3 Tuning Word
SUPPLY	D-TYPE CONN. "DE-9P" (MALE)		Al Tuning Word
		100000	A0 Tuning Word (ASIS)
	_	1000	A17 Tuning Mosco (MSB)
MODULATION	COAX, CONN, SMA FEMALE		M4 Modellation Vord
	(\)		D0 Max Existion Control
		A-A-2-2-2	
		7	DUNAX Deviation Control
		32.	Decobrect
	- 1912	33.	M6 Modulation Word
	XX	34.	M8 Modulation Word
	1-K2	35	M2 Modulation Word
	/X · ·	36	Internal Ref (0) / External (1)
	14	1/27	A16 Tuning Word
	XX>		
(*) This pige	for factory use only and should b	not conn	ected.
	10	V	A V
/}\	7)		-1312
(<>)			XX Y
111			7 ()
r, Y			
			XX. ~
		,	A VV
		J	JI
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		((\)	м.
		11/1	
		1//,	
	/	>.V	
	004		
	364	\ /-	
	FORTER FORTER DOUBLE SUPPLY MODULATION REF. IN	COAX. CONN. SMA FEMALE DOYAL D-TYPE CONN. "DC-37P" (MALE) SUPPLY D-TYPE CONN. "DE-9P" (MALE) MODULATION COAX. CONN. SMA FEMALE REF. IN COAX. CONN. SMA FEMALE	DESCRIPTION FOUNDSTAND COAX. CONN. SMA FEMALE DISTAND D-TYPE CONN. "DC-37P" (MALE) 21. 22. 23. 24. 25. SUPPLY D-TYPE CONN. "DE-9P" (MALE) 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. (*) This pin is for factory use only and should by not connection.

Control Connector J2

Series SGP Compact Wide Frequency Band Indirect Synthesizer

• Small Size: 3 x 3 x 1.28

Wide Frequency Range: 2 to 20 GHz

ODEL SGP 0120

High Resolution: 100 Hz

Low Cost

Kratos General Microwave introduces the Synthesizer General Purpose Series SGP Compact, Wide Band, Indirect Synthesizers offering exceptionally high performance at a low cost.

APPLICATIONS

The Series SGP synthesizer has been designed to be used in applications where small size, low cost and wideband operation are important requirements. It can be used as a Signal Cenerator in Portable Test Equipment, as mis owave source in Built In Test (BIT) subassembly or in a broad frequency range electronic system.

For military applications, this synthesizer requires option G03 to comply with Military Standards. The specific environmental MIL STD requirements as well as 'he EMI/RFI specifications should be provided by the customer.

最加加斯斯

Synthesizer Model SGP0120

Series SGP Compact Synthesizer

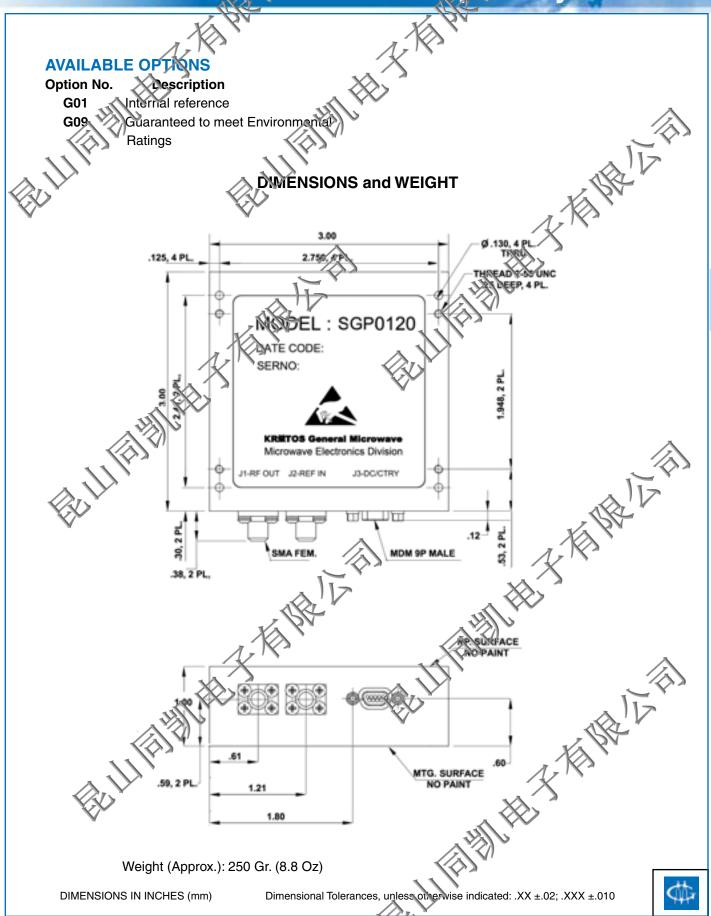
ERIES SGP SYNTHESIZE

	× × ×	S	PECIFICATI	ON - MODE	L
	PARAMETER	SGP0580	SGP0120	SGP0220	SGP0618
1	FRECUENCY RANGE (GHz) (1)	0.5 to 8	1.25 to 20	2 to 20	6 to 18
2	ACCUNACY at 25°C, (ppm) (2)		<u>+</u>	1	
3	FREQUENCY AGING, (ppm/Year) (2)		±	1	7 7
4	FREQUENCY STABILITY OVER TEMP., ppm (2)		±	1 ,	The same
5.1	OUTPUT POWER min. , (digm)		+	7 🕢	1
5.2	Peak to Peak Variation Over frequency and temperature (dB)		6	1	
6	SETTLING TIME , (µsec)		500 to	1,000	
7	SSB PHASE NOISE , max (dBc/Hz)		J. III		
7.1	@ 100 Hz Offset	−70	-6	35	-65
7.2	@ 1 kHz Offset	-87	-8	31	-81
7.3	@ 10 kHz Offset	-94	-8	37	-87
7.4	@ 100 kHz Offset	34	-8	37	-87
7.5	@ 1 MHz Offset	-94	-8	37	-87
7.6	@ 10 MHz Of(set)	-130	-12	25	-125
8	HARMONICS Typ. (dBc)		-2	20	
9	LOCK DETECT		TTL	High	
10	SPURICUS, max (dBc)	- 65	-6	60	-60
11	FREQUENCY CONTROL		Serial (Control	
12	FREQ. STEP SIZE, nominal LSB (kHz) (1)		0.	.1	117
13	REFERENCE OSCILLATOR, External ⁽⁴⁾			,	A L
13.1	INPUT FREQUENCY (MHz)		10	00	Br
13.2	INPUT POWER (dBm)		0 :	±2 ,	7
14	SUPPLY VOLTAGE	7		///	
14.1	VDC, mA			%, 700	
14.2	VDC, mA		-12 🕏	%, 200	
15	DIMENSIONS, Inch (mm)	~ 3	x 3 x 1, 28 (7	76.2 x 76.2 >	(33)
16	RF IN/OUT CONNECTORS	<	SMA F	emale	
17	CONTROL CONNECTOR	11	ME	OM	
18	OPERATING TEMPER 40 URE, (°C)		-20 to	+70	1
	A	X/X/)			1 4

(1) Other Parameters are Optional(2) Specification is for internal reference (Option G01). For External Reference Oscillator the same as the reference.

(3) When 100MHz external reference is used the following reference phase noise spec is required:

a. @ 100Hz offset: - 120 dBc/Hz


b. @ 1KHz offset: -137 dBc/Hz

c. @ 10KHz offset: -145 dBc/Hz

(4) Internal Reference oscillator is Optional (Option G01)

Series SGP Compact Synthesizer

Frequency Extender Series SWE

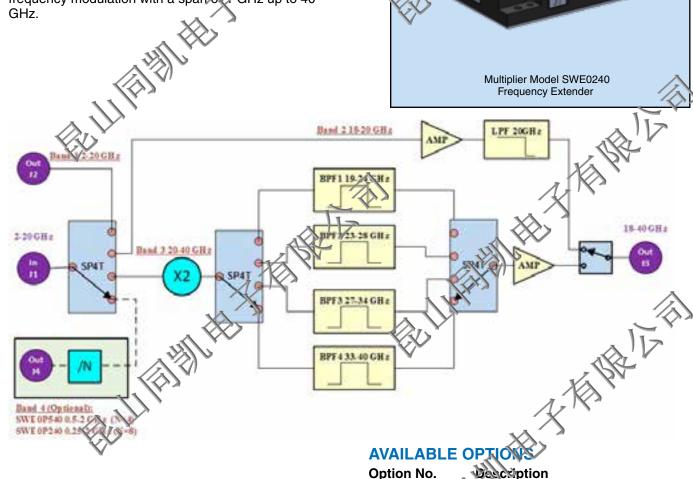
Series SWE Frequency Extender

Kratos General Microwave introduces the series SWE Frequency Extender to complement the Fast Indirect Synthesizer product line

The series SWE Frequency Extender has been designed to extend, at a low cost, the frequency range of the high performance Fast Indirect Synthesizers enabling operation from 0.5 to 40 GHz.

The following product families may be used as an input source for the SWE Frequency Extender: SW0120, SF6219, SM6220, D6218.

The SM6220 synthesizer is capable of wideband frequency modulation with a span of 1 GHz. The SWE is supporting this capability through millimeter wave. The result of combining the SM6220 with the SWE is a wideband synthesizer capable of wideband frequency modulation with a span of 1 GHz up to 40 GHz.


Input Frequency within 2 to 20 GHz

 Output Frequency 2 to 40 GHz Optional 0.5 to 40 GHz Optional 0.250 to 40 GHz

- **Compact Size**
- Airborne
- Low Cost

Multiplier Model SWE0240 Frequency Extender

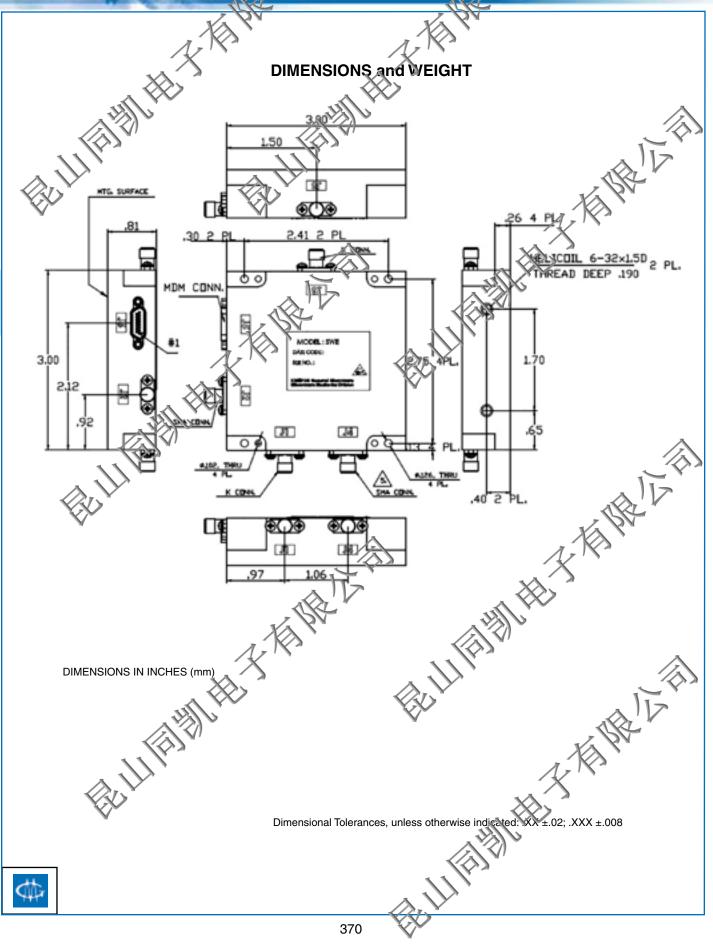
G09

varanteed to meet Environmental

Halings

Frequency Extender Series

SERIES SWE - SPECIFICATIONS


	PARAMETER		SPECIFI	CATION	
Mode		SWE07540	SWE0240	SWE0P520	SWE0P240
1	INPUT REQUENCY RANGE (GHz)	2 to 20	2 to 20	2 to 20	2 to 20/
2	CUT PUT FREQUENCY RANGE (GNZ)	0.5 to 40	2 to 40	0.5 to 20	0.25 to 40
2.1	J2	2 to 20	2 to 20	2 to 20	2 to 20
2.2	J3	18 to 40	18 to 40	N A	18 to 40
2.3	J4	0.5 to 2	N/A	0.5 to 2	0.25 to 2
3	INPUT POWER (dBm)	+8 to +12	+8 to +12	+8 tc +12	+8 to +12
4	OUTPUT POWE (dBm)	\wedge		XX	
4.1	2 to 20 GHz @ J2 min.	⟨ ⟨ ⟩ ⟩ ⟩	=(Input Ro	wer-4dB)	
4.2	18 to 40 GHz @ J3 typ.	+10 to +15	+10 to +15	N A	+10 to +15
4.3	0.5 to 2 GHz @ J4 typ.	0	(AVA)	0	0
5	INPUT VSWR, max.	2.0:1	2.0:1	2.0:1	2.0:1
6	OUTPUT VSWR				
6.1	0.5 to 2 GHz @J4 max.	2.0:1	N/A	2.0:1	2.0:1
6.2	2 to 18 GHz @02 max.	2.0:1	2.0:1	2.0:1	2.0:1
6.3	18 to 40 ՏՎՀ @J3 max.	2.5:1	2.5:1	N A	2.5:1
7	2 nd HARMONICS & SPURIOUS (dBc)				
7.1	2.0 to 20 GHz, min.	-50	-50	-50	-50 4
7.2	13 to 40 GHz, min. (dBc)	-50	-50	N A	-50
8	SWITCHING TIME, max (nSec)	250	250	250	250
9	SUPPLY VOLTAGE (A)	_		X	BA
9.1	12 to 15 VDC (A)	7.5	1.5	0.95	1.5
9.2	-12 to -15 VDC max.	0.25	0.25	0.25	0.25
10	FILTER OVERLAP, min. (GHz)	1 ح	1	N A	1
11	FILTER CONTROL, TTL, Logic 1, 515	7	7	N A	7
12	OPERATING TEMPERATURE, (°C)	-40 to +85	-40 to +85	-40 to +85	-40 to +85
13	AIRBORNE ENVIRONMENT (Chicon G09)	YES	VES .	YES	YES
14	LASER SEALING	YES	YES	YES	YES
15	RF CONNECTORS		7>		11-
15.1	J1, J2, J4	V	SMA FE	MALE	
15.2	J3 OUTPUT	K FEI	MALE	N A	* FEMALE
16	CONTROL CONNECTOR		MDM 1	5 PINS	
17	DIMENSIONS, (mm)	76.2 x 76.2 x 20.32			
17.1	51MENSIONS, (Inches)		3.0 x 3.	0 x 0.8	
1.\	OTES With Option G09 -40 to +85 °C Requires Option G09				Г
	· ·		<i>m</i> ,		

NOTES

- 1. With Option G09 -40 to +85 °C
- 2. Requires Option G09

Frequency Extender Series SWE

Frequency Extender Series SWE

LOGICTABLE

THE	S0	S1 ,	\$2
Shunt-Down Mode	0	0 <<	
2 to 20 GHz (J2)	0	6//	1
18 to 20 GHz (J3)	0	1	0
19 to 24 GHz (J3)	0	1	1
23 to 28 GHz (J3)	1	0	0
27 to 34 GHz (J3)	1	0	1
33 to 40 GHz (J3)	1	1	0
0.5 to 2 GHz (J4)	1	1 1]_
捌妝	\$ P		
NOTES:			
NOTES:			

PINOUT TABLE

	·	
J5 PIN	FUNCTION	
No.	, \	_'\\
1	+12 V	7
2	+12 V	
3	GND	
4	50	
5	81	
6	52	
7 111	N/C	
9	GND	
9	-12 V	
10	GND	
11	N/C	
12	GND	
13	N/C	
14	N/C	_
15	GND	
ded Talkloni	头杨枫	7

"0" - -0.3 to +0.8 V

"1" - +2 to +5 V

CONTROL COMMAND

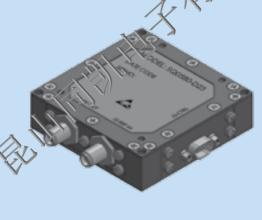
- Switch control logic signals shakes 3 line binary coded To Llogic, as described in the Logic Table.
 Shut-Down Mode the unit is set to 14 and the line.
- • Shut-Down Mode – the unit is set to J4 and there is a current to the frequency divider.

Series SQ0580 Narrow Frequency Sand **Synthesizer**

Series SQ0580 Narrow Fr goency Band **Synthesizer**

Kratos General Miorowave introduces the Series SQ Narrow Band Synthesizer as a high performance, to cost alternative to a fixed frequency source.

The Series SQ synthesizer has been designed to be used as the L.O. in various up and down frequency converters. It can be used as a replacement of a DRO in applications that require high frequency stability over temperature and in operation under vibrations.


High Frequency Accuracy

High Frequency Stability

Low Cost

Compact Size

High Reliability

SERIES SQ - SPECIFICATIONS

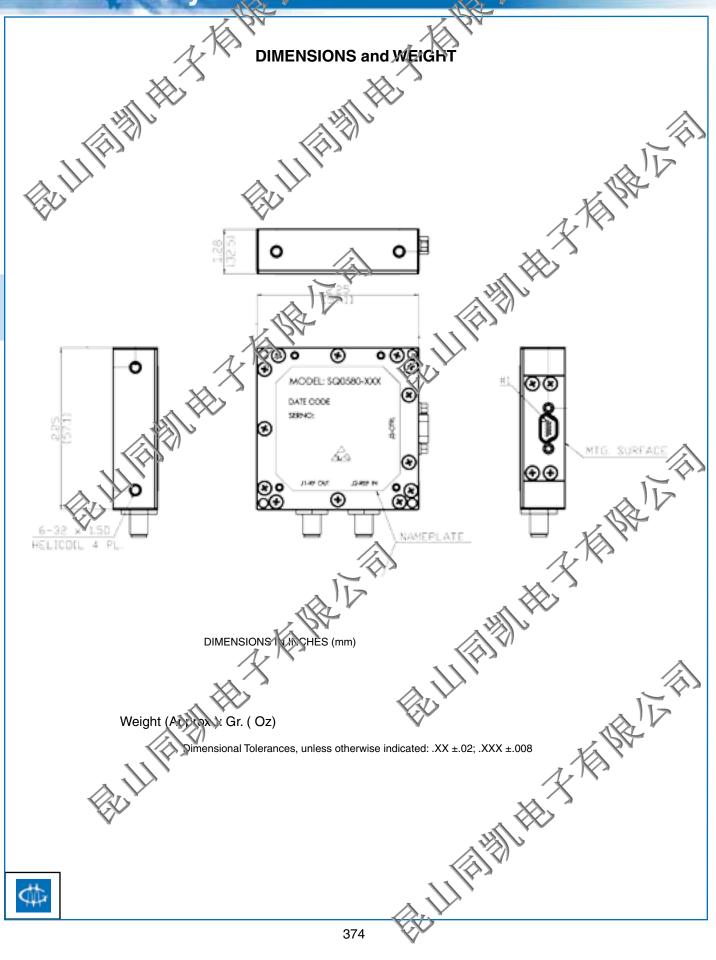
		周期提升	Synthesizer Model SQ
<		SERIES SQ - SPECIFICATIONS	SPECIFICATION
		PARAMETER	MODEL SQ0580
	1	FREQUENCY RANGE (GHz) (1)	0.540 8
	2	RF BANDWIDTH, up to (%)	03
	3	ACCURACY, (ppm)	Same as of the ref. crystal
	4	FREQUENCY AGING, (ppm)	Same as of the ref. crystal
	5	FREQUENCY STABILITY, (ppm)	Same as of the ref. crystal
	6	OUTPUT POWER, (dBm)	+10 to +14
	7	SETTLING TIME, max. (µsec)	50
	8	SSB PHASE NOISE , max (dBc/Hz) (2)	@ 8 GH
	8.1	100 Hz Offset	-70, 153
	8,2	@ 1 kHz Offset	-90
	8.3	@ 10 kHz Offset	-39
	8.4	@ 100 kHz Offset	-125
_ [8.5	@ 1 MHz Offset	-142

Series SQ0580 Synthesizer

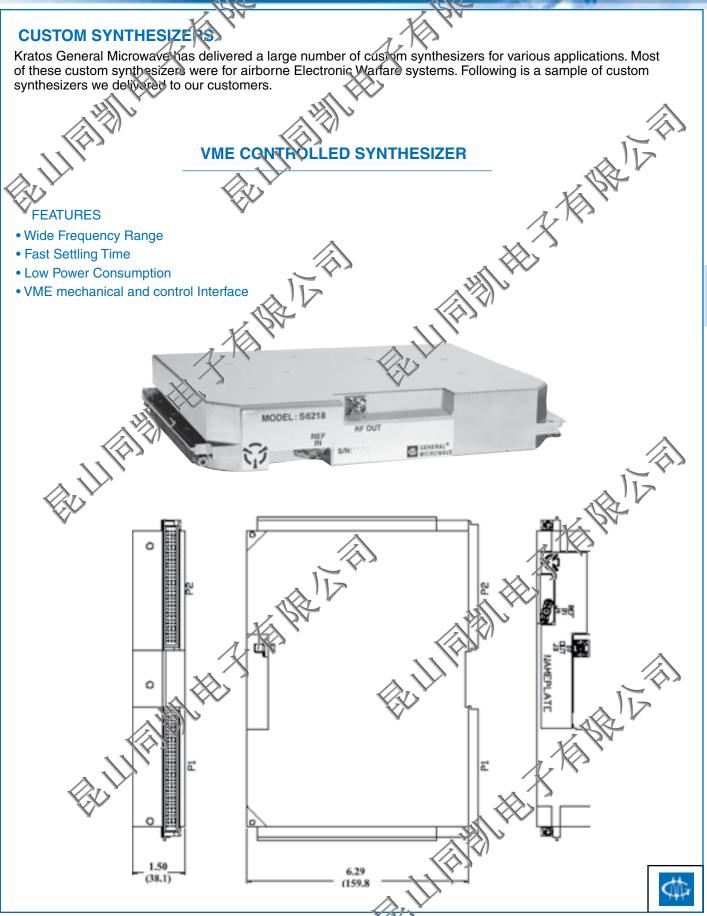
SERIES SQ - SPECIFICATIONS

	₩ , *	SPECIFICATION
	PARAMETER	MODEL SQ0580
9	HARMONICS, (dBc) typ	-60
101	SUB-HARMONICS, max (dBc)	-60
	SPURIOUS, max (dBc)	-80
12	CONTROL	Serial Control
13	FREQ. STEP SIZE, nominal LSB (Hz) (1)	100
14	EXTERNAL REFERENCE OSCILLATOR (2)	
14.1	INPUT FREQUENCY (MHz)	11/100
14.2	INPUT POWER (dBm)	0 ± 2
15	SUPPLY VOLTAGE , (VDC)	12 ±0.4V @ 290 mA
16	DIMENSIONS, Inch (mm)	2.25 (57.2) x 2.25 (57.2) x 1.28 (32.5)
17	RF OUTPUT & REF/INPUT CONNECTORS	SMA Female
18	CONTROL CONNECTOR	MDM (9 PINS)
19	OPERATING TEMPERATURE, (°C)	-40 to +85
20	STORAGE TEMPERATURE, (°C)	-65 to +125
21	ENVIRONMENTAL CONDITIONS	Airborne
22	OCK DETECT OUTPUT	TTL High

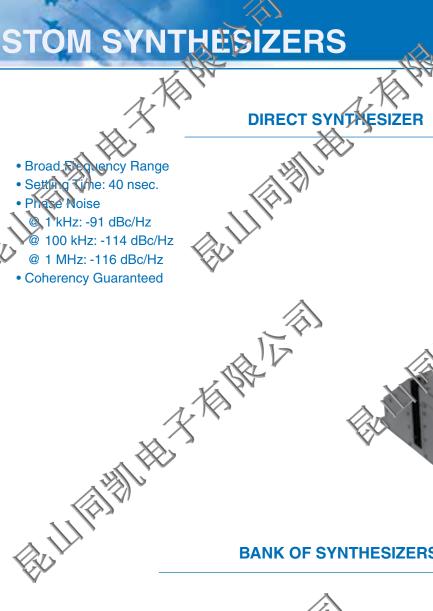
- (1) Other Parameters are Optional
- (2) For internal Reference Oscillator (option G01) or external reference oscillator with the following specs (100MHz output):
 - 100Hz offset: 120 dBc/Hz
 - 1KHz offset: -137 dBc/Hz
 - 10KHz offset: -145 dBc/Hz

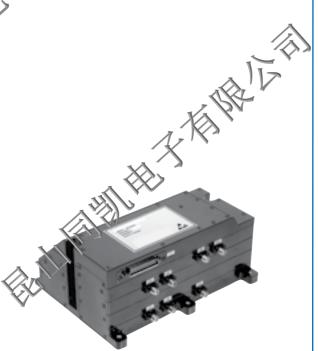

AVAILABLE OPTIONS

Option No. Cescription

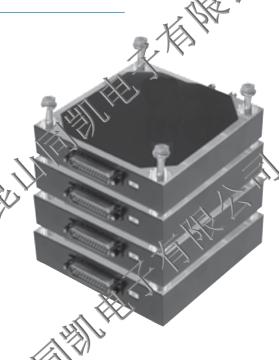

G09 Guaranteed to meet Environmental Ratings

Series SQ Synthesizer




CUSTOM SYNTHESIZERS

CUSTOM SYNTHESIZERS


- he: 40 nsec.
- - Hz: -91 dBc/Hz
 - 00 kHz: -114 dBc/Hz
- 1 MHz: -116 dBc/Hz
- Coherency Guaranteed

BANK OF SYNTHESIZERS

CUSTOM SYNTHESIZERS

Digitally Tuned Oscillators (DTOS)

General Microwave offers a line of DTOs covering the 2-18 GHz frequency range based upon its catalog line of broadband VCOs. The DTO provides the desired output frequency in response to a digital control signal. A block diagram of the DTC is shown in Fig. 1. By appropriate design of the electronic circuitry, settling times of less than 300 nanoseconds are achieved. To obtain a frequency accuracy of the order of ±1%. including the effects of temperature, a proportionallycontrolled heater is required for the VCO and the electronic circuitry is temperature-compensated. A lateh mode is provided as a standard leafure.

To enable analog frequency modulation of the DTO, a separate frequency modulation port is provided. Since the slope of the frequency vs. voltage curve of the VCO varies over the frequency band, compensation is required to obtain a relatively constant deviation bandwidth. Compensation to within ±5% is achieved (Option 2) by utilizing a PROM to vary the attenuation applied to the modulating signal. The DTO may be frequency modulated at rates of greater than 15 MHz.

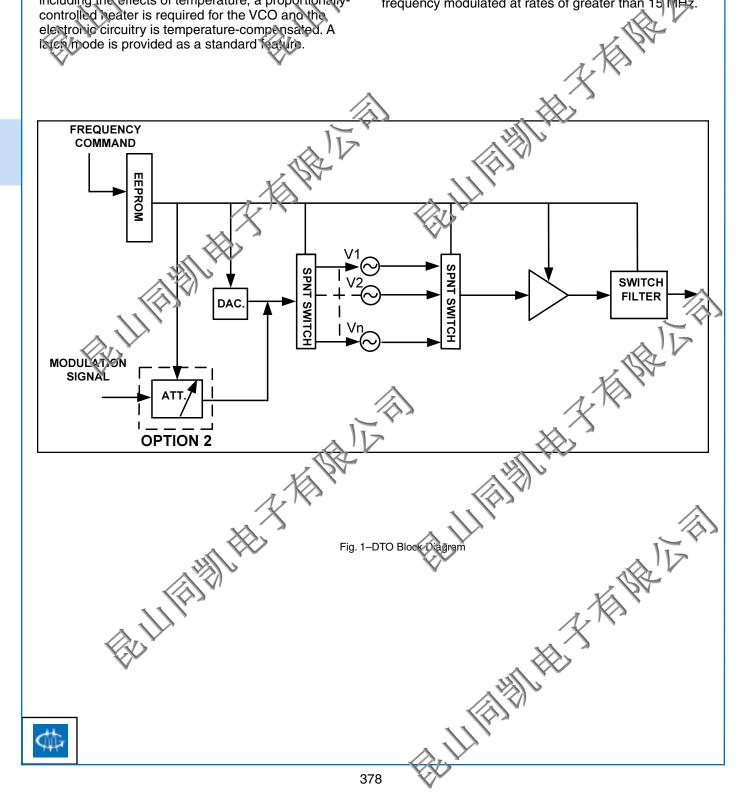


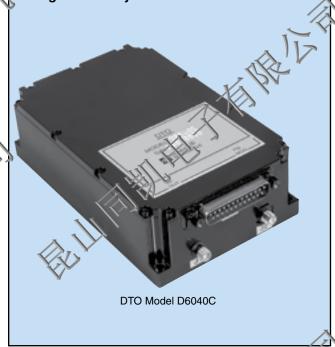
Fig. 1-DTO Block Diagr

Selection Guide

SELECTION	N GUNDE DIGITAL	LLY TUNED OSCIL	LATORS (DTO)

	FREQUENCY RANGE (GHz)		MODEL	PAGE	COMMENTS			
	0.5 2	4 6 8	12	18	19	MODEL	PAGE	COMMENTS
		$^{\prime\prime}$			1			
	12				71/1	>> D6010C		
		4		*		D6020C		
	26	5.2		11	1,	D6026C	374	Single Band Digitally Tuned
	41	8	Δ		*	D6040C	3/4	Oscillators
4		8	12			D6080C		KA PV
	V		12	18		D6120C		1. 1.
	0.52				х	D6052		
	2	6			17,	D6206	377	Multi-Band Digitally
		6		18	1,1	D6618	3//	Tuned Oscillators
	2				117	D6218	1	
	2	6	- X-X	K	L"	DC6206 DC6618	382	Compact Airborne DTO
	0.5	-	1, K	18			387	Custom Multi-Band Digitally Tuned Oscillators
		Yλ				A.		

展別開期限 展別用原規 展別用原規 是是11月1日


Series D60 Single-Band DTQs

The Series D60 single-band DTO covers the frequency range of 0.5 to 18 GHz in 6 DTOs. Fig. 2 is the basic block diagram of the single band DTO.

When constant deviation bandwidth is required across the entire frequency band of the DTO, Option 2 should be used.

For military applications, these DTOs require option G09 to comply with Military Standards. The specific covi connental MIL STD requirements as well as the EMI/RFI specifications should be provided by the customer.

- 1 to 18 GHZ in Various Sub-Band
- Fast Settling Time
- Modulation Capabilities
- High Reliability

Series D60 Sing Band DTOs Specifications

	SINGLE BAND DTO SPECIFICATIONS						
	1.K		1,	MO	DEL		
	PARAMETER	D6010C	D60200	D6026C	D6040C	D6080C	D6120C
	FREQUENCY RANGE (GHz)	1-2	24	2.6-5.2	4-8	8-12	12-18
	ACCURACY Incl. (emp. (MHz)	±2	¥±2	±3	±	4	±6
	FREQUENCY SETTING (1), (MHz) within 1 psec		±2		±	3	±4/
	MODULATION ⁽²⁾	1/21					11-
>	Band Width Standard unit, min (MHz)			DC t	o 15	1	
	With Option G4 ⁽⁶⁾ , min (MHz)			DC t	o 30		
	Sensitivity variation Standard unit, typ			3	:1 /	X .	
	With Option 2, max			1.1)	
	Frequency deviation bandwidth, min @ 2v P-P (MHz)	100	200	260	40	00	600
	RF POWER Output, min (dBm)				10		
	Variation, incl. temp. and freq. max (NB)	±2	±1	1.5		±2.0	
	RESIDUAL FM, P-P @ -3 dBc, typ (kHz)	5	0	75	10	00	150
	HARMONICS, max (dBc)			5		-40	-20
	f/2, 3f/2,max (dBc)	N/A					-20
	SPURIOUS, max (dEc)	-60					
	PULLING VSWR 2: max (MHz)	1					
	PUSHING, max (xH2/V)	250					\triangle
	NOMINAL LS3 Sta (MHz)	0.5					1.5
	MONOTONICITY	Guaranteed					113
	to specified accuracy @ +25°	2					ZIV
	CONNECTORS Control/Power	25 pin, D type male ⁽⁴⁾) 4
	RF output	SMA female					
	FM input			SMC	male/		
	POWER SUPPLY REQUIREMENT Voltage @ Current	+15V ± 0.5V @ 375 mA max -15V ± 0.5V @ 370 mA max +5V ± 0.5V @ 100 mA max +28V -4V 42V @ 1,000 mA max					
	Turn-On Current @ 28 volts			3 amp	s max		
	ENVIRONMENTAL (5) Operating temperature (°C)	0 to +70					
	Storage temperature (°C)		V	−54 to	+100		
	MECHANICAL DIMENSIONS Inches	5.67 x 3.55 x 1.69					
	Millimeters			144,0 x 9	0,2 x 42,9		
Δ	VAIL ARLE OPTIONS		(4) Of walation	to fafter 1 co		× '	

AVAILABLE OPTIONS

Option No. Description

2 Reduced Modulation Sensitivity Variation

G4 Modulation Band Width:

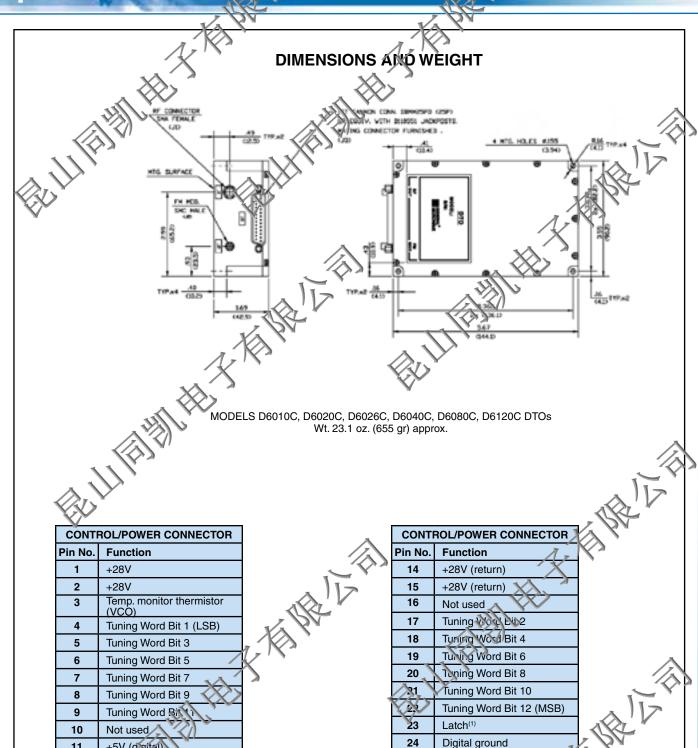
DC to 30 MHz (6)

G09 Guaranteed to meet Environmental Ratings

(1) If relative to f after 1 sec.

(2) 50 Ohm input impedance.

(3) 12 Bit TTL input.


(4) Mating connector furnished

(5) RF section and driver components hermetically sealed)

(6) Please consult us for jurther Modulation Band Width improvement:

Series D60 Single Band DTO Specifications

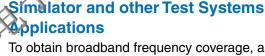
Dimensional Tolerances, unless otherwise indicated: .XX \pm 02: .XXX

-15V (analog)

(1) Logic "0" to latch input word. Logic "1" to unlatch input word

11

12


+5V (digital)

+15V (analog) Analog ground

Series D60 Multi-Band DTOs

MULTI-BAND DTOs

- 0.5 to 18 GHZ in Various Sub-Band
- Wide Frequency Sange
- Fast Setting Vime
- Wide Modulation Capabilities
- High Reliability

To obtain broadband frequency coverage, as well as to improve settling speed, two or more VCOs are combined, as shown in Fig. 1. A high-isolation PF switch is required to suppress all but the desired VCO. A switched lowpass filter is included in the putput to reduce harmonic levels. The harmonic level for catalog units is specified at -20 dBc. However, -55 dBc suppression is available as an option.

General Microwave offers multi-band DTOs covering the 0.5-2, 2-6, 6-18 and 2-18 GHz frequency ranges. The units feature high speed, high accuracy and low phase noise. The specifications are summarized on page 190. The modular design of the DTOs enables the user to select narrower frequency coverage if desired. Please consult the factory for individual requirements.

For o ilitary applications, these DTOs require option GO 1s comply with Military Standards. The specific environmental MIL STD requirements as well as the EMI/RFI specifications should be provided by the customer.



Fig. 1-Multi-Band DTO Block Diagram

Series D60 Multi-Band DTOs Specifications

MULTI-BAND DTO SPECIFICATIONS					
1, K	1)	МО	DEL		
PARAMENER	D6052	D6206	D6618	D6218	
FREQUENCY RANGE (GHz)	0.5-2	2-6	6-18	2-18	
ACCURACY @+25°C, 'nax (MHz)	_ X X X Z	±	:2		
FREQUENCY DENTE max (MHz/°C)	JIII .	±(Q.1		
FREQUENCY SETTILING (1), max (MHz) within 1 µsec	±	2	±3 (6-12 GHz) ±4 (12-18 GHz)	±2 (2-6 GHz) ±3 (6-12 GHz) ±4 (12-13 GHz)	
MODULATION ⁽²⁾				1	
Pandwidth			V	PIL	
Standard unit, min (MHz)		DC:	to 10	3	
With Option G4 ⁽⁵⁾ , min (MHz)	A		to 30		
Sensitivity variation			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		Tr.	1.		
Standard unit, typ					
Option 2 Unit, max			1):1		
Frequency deviation bandwidth, min @ 2v P-P (MHz) – with option 2	100	11/23	500		
RF POWER Output, min (dBm)		+	10		
Variation, incl. temp. and freq., max (CB)	¥.	2	±2	2.5	
PHASE NOISE, typ (dBc/Hz) @ 100 kHz offset			65		
RESIDUAL FM, P-P @ -3 (Bc) typ (kHz)	50	75	15	50	
HARMONICS, max (d.Rc)				А	
Standard Unit		- :	20	//2	
Option 3 Unit	N/A	-55	_ <u>{</u>	55	
f/2, 3f/2,max (d3c)	N/	/A	_ - {	55	
SPURIOUS, max (dBc)		_	60		
PULLIN a VSWR 2:1 max (MHz)			1	KL.	
PUSHING, max (kHz/V)	± 125	±250	1,2/3	000	
NOMINAL LSB ⁽³⁾ (MHz)			.5	<u> </u>	
MONOTONICITY		Guara	anteed		
CONNECTORS	1 1	O min D to			
Power	117		/pe male ⁽⁴⁾		
Control	' <i>!</i>		ypersale ⁽⁴⁾		
RF output	<u> </u>	Sivie	emale male		
Modulation Input POWER SUPPLY REQUIREMENT		SWIG	male		
Voltage @ Current +15V ± 0.5V	450	700	1,000	1 250	
voltage € Current 713V ± 0.5V -15V ± 0.5V	250	250	300	1,250 300	
+5V ± 0.5V	150	150	500	500	
+28V ±2V	1,000	1,000	3,000	3,000	
Turn-ON Current @ 28 vols	3 amp			s max	
ENVIRONMENTAL	3 allin	р шах	U amp	3 TIAN	
Operating temperature (%) 0 to +70					
Storage temperature (°C)			0 +100		
MECHANICAL DIMENSIONS		20 10	17	A	
Inches	5.70 x 4.80 x		6 10 6 00 4 0 00		
1 5	2.50		6.48 × 6.23 x 2.00		
	144,8 x 121,9 x		VV		

384

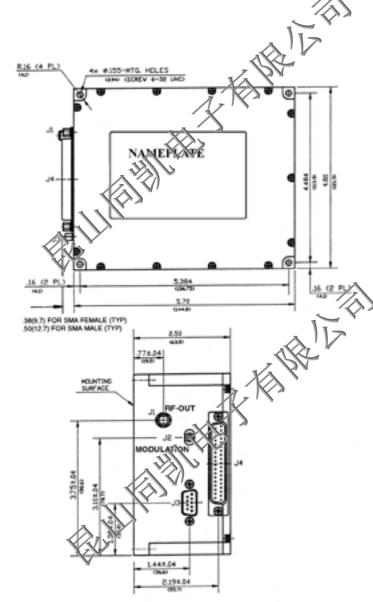
(4) Mating connector furnished
(5) Please consult us for further Medulation Band Width improvement:

(1) If relative to f after 1 sec.(2) 50 Ohm input impedance.

(3) 16 Bit TTL input, including VCO control.

Series D60 Mul Band DTOs Specifications

AVAILABLE OPTIONS


Option No.	Description
2	Reduced Modulation Sensitivity V

- 制想头颅 Moduration Sensitivity Variation
- Improve ! Harmonic Suppression 3 SMA Female Modulation Connector 4
- **B**09 3 to 20 GHz Operation
- Operating Temp. range -5 ($^{\circ}$ C) to +7 $^{\circ}$ **B11**
- With options 2 & 3. Operating Temp.

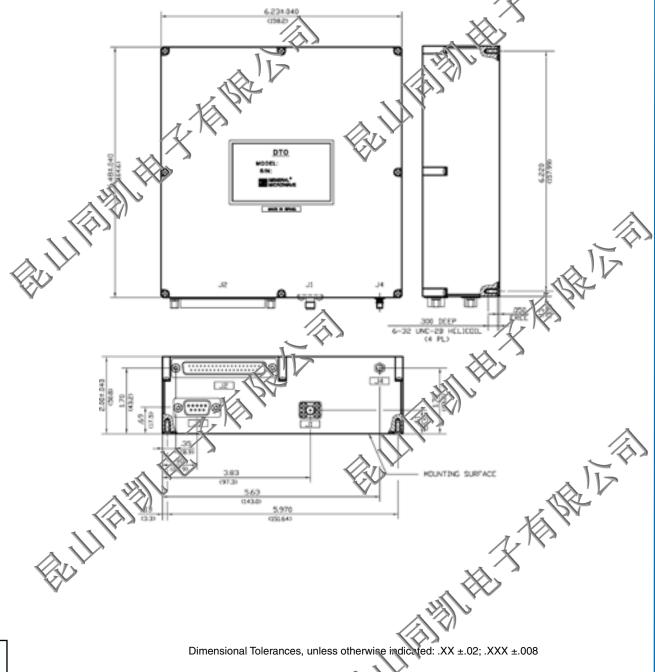
range -10 (°C) to +70 (°C)

Guaranteed to meet Environmental Ratings

DIMENSIONS AND WEIGHT - MODEL D6052

	MODELS 26052 Control Connector (J4)					
PIN NO.	FUNCTION					
1	A13 Tuning Word (MSB)					
2	A1. Tuning Word					
3 🔪	A9 Tuning Word					
4	A7 Tuning Word					
(25)	A5 Tuning Word					
6	A3 Tuning Word					
7	A1 Tuning Word					
8	V1 VCO Control (MSB)					
9	L1 Latch 1 (Strobe)					
10	L3 Latch 3					
11	OE Memory Output Enable					
12	D1 Data Bus					
13	D3 Data Bus					
14	D5 Data Bus					
15	D7 Data Bus					
16	W2 Write 2					
17	OET2 Output Enable Transceiver 2					
18	G Ground					
19	WE Write Enable					
20	A12 Tunii g Word					
21	A13 Julying Word					
22	18 Tuning Word					
23	Ao Tuning Word					
24	A4 Tuning Word					
25	A2 Tuning Word					
(26)	A0 Tuning Word					
27	V0 VCO Control (LSB)					
28	L2 Latch 2					
29	G Ground					
30	D0 Data Bus					
31	D2 Data Bus					
32	D4 Data Rus					
33	D6 Data Sus					
34	Wi Write 1					
35	CE71 Dutput Enable Transceiver 1					
36	OFT3 Output Enable Transceiver 3					
37	G Ground					

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008


Series D60 Multi-Band DTOs Specifications

1/2						
MODE \$ 06052 Power Connector (J3)						
PIN NO.		PIN NO.	` ,			
1	+5V	6	Return for:+5V, -15V, +15V			
2	-15 M	7	Return for:+5'V -1.5V, +15V			
3	-15V	8	+28V (return)			
4	+28V (return)	9	+28V			
A 5	+28V		1			

NOTES: For Normal Operation of the DTO

- 1) PIN nos. 9, 10 and 28 should be connected together.
- 2) PIN no. 11 should be grounded.
- 3) PIN nos. 12, 13, 14, 15, 16, 17, 19, 30, 31, 32, 33, 34, 35 and 36 are for FACTORY PROGRAMMING ONLY and should not be connected.

DIMENSIONS AND WEIGHT - MODELS D6206, D6218 and D66 8

Series D60 Muk Band DTOs Specifications

	, x						
	MODELS D6206, D6218 and D6618 Fower Connector (J3)						
PIN NO.	FUNCTION	PIN NO.	FUNCTION (1)				
1	+5V	6	Return for:+5V, 15V, +15V				
2	–15V	7	Return for +5V, -15V, +15V				
3	+15V	8	+22V (return)				
214	+28V (return)	9 🔇	-28V				
5	+28V		V				

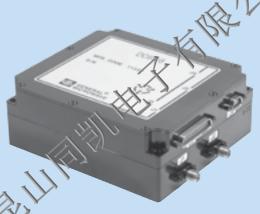
NOTES: For Normal Operation of the DTO

- 1) PIN nos. 9, 10 and 28 should be connected together (Latch enable).
- 2) PIN no. 11 should be grounded.
- **3)** PIN nos. 12, 13, 14, 15, 16, 17, 19, 30, 31, 32, 33, 34, 35 and 36 are for FACTORY PROGRAMMING ONLY and should not be connected.

	Control Connector (J2)					
	PIN NO.	FUNC				
	1	A14	Tuning Word (MSB)			
	2	A12	Tuning Word			
	3	A10	Tuning Word			
	4	A8	Tuning Word			
	5	A6	Tuning Word			
	6	A4	Tuning Word			
	7	A2	Tuning Wood			
	8	V0	VCO Control Bit			
	9	L1	Latch 1 of 3 (Strobe)			
	10	L3 \chi	Latch 3 of 3 (Strobe)			
	11	QE	Memory Output Enable			
	12 🔾	1/6/1	Data Bus			
	1,3	7/3	Data Bus			
	14	D5	Data Bus			
4	15	D7	Data Bus			
A 1	16	W2	Write select 2			
	17		Output Enable Transceiver 2			
$\sqrt{}$	18	GND	Ground			
W	19	WE	Write Enable			
	20	A13	Tuning Word			
	21	A11	Tuning Word			
	22	A9	Tuning Word			
	23	A7	Tuning Word			
	24	A5	Tuning Word			
	25	A3	Tuning Word			
	26	A1	Tuning Word			
	27	A0	Tuning Word (LS3)			
	28	L2	Latch 2 of 3 (Strobe)			
	29	G	Ground			
	30	D0	Data Bus			
	31	D2	Data Bus			
	32	Q4 V	Data Bus			
	33	77/297	Data Bus			
	34	₩1	Write select 1			
	36	OET1	Output Enable Transceiver 1			
4	36	OET3	Output Enable Transceiver 3			
∕>.`	37	GND	Ground			
$\langle \rangle \rangle$,		2/12			
V			1			
			1. BV			
			`			
			1,1			
		\sim	>>			
	- 1	$^{\prime\prime}$ $^{\prime\prime}$				
	A 43	31/1				
	12	\ /1				
2	1/Ky)	1)				
1	1),		d			
3 -1	Y		4			
X>						
V						

MODELS D6206, D6218 and D6618

Series DC60 Compact Airborne DTOs


FOR RWR, ESM AND OTHER APPLICATIONS

KRATOS General Microwave offers a compact multiband DTOs for various althorne and other applications, covering the 2-6 at a 6-18 GHz frequency ranges. The units feature high speed, high accuracy and low phase noise. The modular design of the DTOs enables the user to select narrower frequency coverage if desired. Please consult the factory for individual requirements.

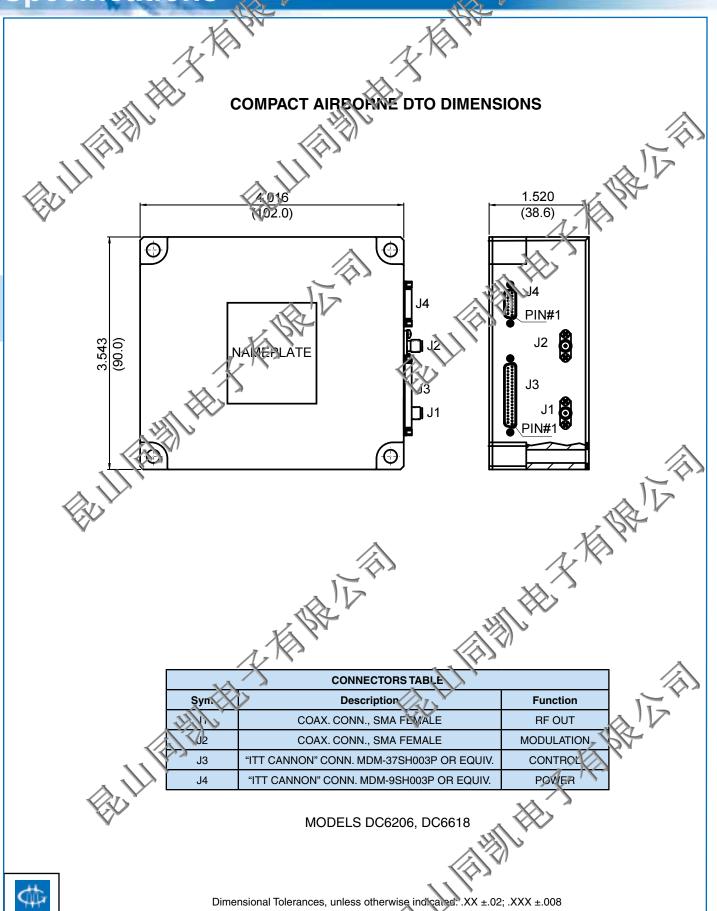
展別開開開

展別展別

- Fast Settling Time
- 2 to 18 GHz in Various Sub-Bands
- Small Size
- For Airborne Applications

DTO Model DC6618

Series DC Compact Apporne DTOs


AIRBORNE DTO SPECIFICATIONS

	MODEL		
PARAMETER	DC6206	DC6618	
FREQUENCY RANGE (GHz)	2 to 6	6 to 18	
ACCURACY ® +25°C, max (MHz)	±	2	
FREQUENCY DRIFT, max (MHz/°C)	±(0.1	
FFIFQUENCY SETTLING within 1 usec, max (MHz)	±2	±3	
MODULATION ⁽¹⁾ Bandwidth	/	K'	
min (MHz)	DC to 15	DC to 10	
Sensitivity variation, max	J.[[Y 1.1	:1	
Frequency deviation (MHz/V) max	±250 @ 5vPTP	±250 @ 2vPTP	
RF POWER Output, min (dBm)	2-8	+10	
Variation, incl. temp. and frequency, max (dB)	±2	±2.5	
PHASE NOISE, max (dBc/Hz) @ 100 kHz offset	–70	-65	
RESIDUAL FM, p-p @ -3 dBc, max (kHz)	200	150	
HARMONICS max (dBc)	-45	-55	
SUB-HARMONICS, max (dBc)	-45	-55	
SPURIOUS, max (dBc)	-(60	
PULLING @ VSWR 2:1, max (MHz)	±2		
PUSHING, max (MHz/V)	±2.5	±0.5	
FREQUENCY STEP per LSB, (MHz) Nominal	1 /	0.5	
MONOTONICITY	Suara	inteed	
OPERATING TEMPERATURE (°C)(2)	0 to	+70	
CONNECTORS Power	9 Pin MI	OM Male	
Control	37 Pin M	DM Male	
RF output	SMA f	emale	
Modulation Input	SMA female		
POWER SUPPLY REQUIREMENT (V)	+5 & +28		
MECHANICAL DIMENSIONS Inches	4.0 x 3	5 x 1.5	
Millimeters	1020 x 9	0.0 x 38.6	

⁽¹⁾ Option(2) Other operating temperature option

Series DC60 Compact Airborne D70s Specifications

Series DC50 Compact Abborne DTOs Specifications

33 CONTROL CONNECTOR - PIN ASSIGNMENT						
		ction				
Pin No.	DC6206	DC 6218	Description			
1 1	N.C.	A14	Tuning Word (MSB)			
21	A11	A12	Tuning Word			
(2)	A9 <	A10	Tuning Word			
11/4	A7	A8	Tuning Word			
5	A5	A6	Tuning Word			
6	A3	A4	Tuning Word			
7	A1	A2	Tuning Word			
8	V1	V0	VCO Control Bit			
9	LE\	LE\	Latch			
10	N.C.	N.C.	N.C.			
11	OE\	N.C.	OE			
12	N.C.	N.C.	N.C.			
13	N.C.	N.C.	N.C.			
14	N.C.	N.C.	N.C.			
15	N.C.	N.C.	N.C.			
16	N.C.	N.C.	N.C.			
17	N.O.	N.C.	N.C.			
18	GND	N.C.	Ground/N.C.			
19	N.C.	GND	Ground			
20	A12	A13	Tuning Word			
21	A10	A11	Tuning Word			
22	A8	A9	Tuning Word			
23	A6	A7	Tuning Word			
24	A4	A5	Tuning Word			
25	A2	A3	Tuning Word			
26	A0	A	Tuning Word			
27	V0	40	VCO Control/Tuning Word (LSB)			
28	N.C.	GND	Ground			
29	GND	N.C.	Ground/N.C.			
30	N.C.	N.C.	N.C.			
31	N.C.	N.C.	N.C.			
32	N.C.	N.C.	N.C.			
33	N.C.	N.C.	N.C.			
34	N.C.	N.C.	N.C.			
35	N.C.	N.C.	N.C.			
36	N.C.	N.C.	N.C.			
37	GND	GND	Ground			
	1 2					

Notes:

A. For Model DC5218

- 1. Pins 19 28 and 37 should be grounded.
- 2. Pins 10 through 18 and 29 through 36 should not be connected (for factory use only).

B. For Model DC6206

- 1. Pins 11, 18, 29 and 37 should be grounded.
- 2. Pins 1, 10, 12 through 17, 19, 28 and 30 through 36 should not be connected (for factory use only).

Series DC60 Compact Airborne D70s Specifications

POWER CONNECTOR - PIN ASSIGNMENT						
Pin No.	Function	Description	Notes	Max. Current Consumption (mA)		
1	5V	Digital Supply		500		
2	−15V	Analog Supply		500		
3	+15V	Analog Supply		1000		
V	28V Return	Negative Heater Supply		K SV		
5	28V	Positive Heater Supply				
6	Return for:+5V, -15V, +15V	Ground	1 1	_		
7	Return for:+5V, -15V, +15V	Ground	1 🔆	-		
8	28V Return	Negative Heater Supply	THE CONTRACTOR OF THE PARTY OF			
9	28V	Positive Heater Supply	(\$\)\(\alpha\)	1,000 ⁽²⁾		

Notes:

1. GND is the DTOs analog ground for the +15V, -15V and +5V supplies and not the heater's ground.

限制制制

提加斯斯

2. Warm up 3,000 mA, steady state 1,000 mA max.

展別開想

392

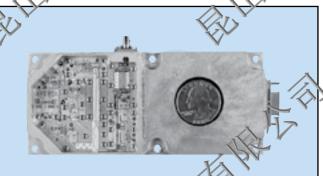
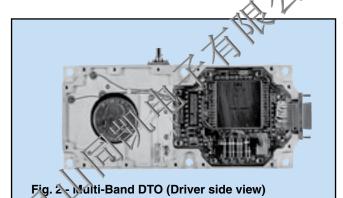
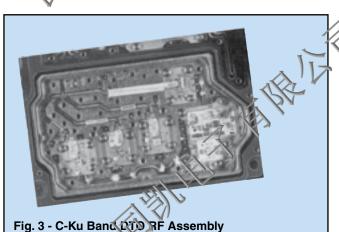
CUSTOM DTOs

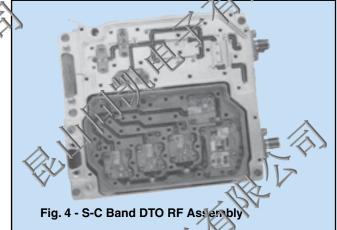
SUSTOM MULTI-BAND D7

Multi-Band DTO For EW and ESM Applications

General Microwave has developed numerous multi-band DTOs for demanding EW and ESM high-reliability applications, as shown in the

photographs. The key requirements for the EW Multi-Band DTO, as seen in Figs. 1 and 2, are compact size, low spurious and harmonic levels, and 45g rms endurance vibration levels. The unit includes 3 VCOs, 3 MMIC amplifiers, a switched lowpass filter, a custom hybrid electronic circuit, and RFI/EMI intering.


Fig. 1 - Multi-Band DTO (RF side view)

The C-Ku band DTO (Fig. 3) includes 3 fundamental mode VCOs and 1 push-push VCO, 4 MMIC amplifiers, a SP41 switch, a switched lowpass filter, and associated electronic circuitry. The key

requirements are suppression of the unused VCCs and fast settling tuning. The S-C band DTO (Fig. 4) meets similar requirements

Multi-Band Frequency Locked Oscillator (FLO)

MULTI-BAND FREQUENCY COCKED OSCILLATOR (FLO)

KRATOS General Microwave has developed a new product line of McVi. Band Frequency Locked Oscillators (FLO). This product line is an enhancement to our free running Digitally Tuned Oscillator (DTO) products. This FLC combines the high speed of DTO with the high accuracy and long-term stability of a frequency locked source. The key specification teature of the FLO is a timing speed of less than 1 page to softly within 1 MHz of the desired frequency.

SIMULATOR AND TEST SYSTEMS APPLICATIONS

The FLO was specifically designed for test systems and simulator applications. It is a low cost replacement for high cost direct synthesizers, in applications that the frequency setting time of 1 msec is meeting the system requirements.

- Fast Settling (1MHz in 1 µsec)
- Wideband (2-18 GHz)
- High Accuracy
- Low Phase Noise

FLO Model FL6618

SPECIAL ORDER PRODUCT

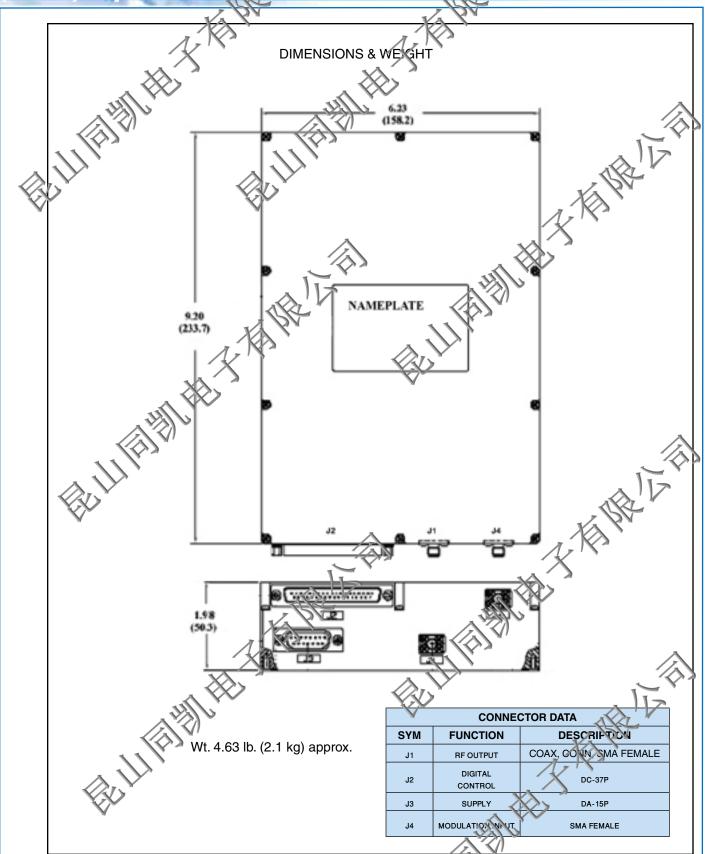
SPECIAL ORDER PRODUCT

SPECIAL ORDER PRODUCT

SPECIAL ORDER PRODUCT

SELECTION QUIDE FREQUENCY LOCKED OSCILLATORS

XX/	\\\(\lambda\)		
FREQUENCY RANGE (GHz)	MODEL PAGE	COMMENTS	
0.5 2 4 6 8 12.0 18.0	MODEL PAGE	COMMENS	
(D)		X PV	
218	FL6218 388	Frague No. Locked Oppillator	
618	FL6618	Frequency Locked Oscillator	


Multi-Band Frequency Locked Oscillator (FLO) Specifications

Multi-Band Frequency Locked Oscillato Specifications

		SPECIFICATION			
	PARAMETER	FL6218	FL6618		
1	FREQUENCY RANGE (GHz)	2 to 18	6 to 18		
2 .	ACCUMACY OVER TEMPERATURE (M/z)	±1			
3	SETTLING TIME within 1 µsec (MHz)	±1	. 112		
4	RESIDUAL FM, max (kHz)	10	ALL V		
(35) X	MODULATION ⁽¹⁾	V	2 PV		
V 6	RF POWER	7			
6.1	Output, min (dBm)	+ 10	*		
6.2	Variation, incl. temp. and freq., max (dB)	±2.5			
7	PHASE NOISE, max (dBc/Hz) @ 100 kHz of set	-80			
8	HARMONICS, max (dBc)				
8.1	Integer	-55			
8.2	f/2, 3f/2	-55			
9	SPURIOUS, max (dBc)	-60			
10	PULLING, VSWR 2:1, max (MHz)	± 1			
11	PUSHING, max (AH2/V)	± 500			
12	TUNING CONTROL				
12.1	Nominal LSB (kHz)	250			
12.2	Tuning (hits)	17			
13	CONNECTORS				
13.1	Power	15-Pin, D	type		
13.2	Control	37-Pin, D	tyoe		
13.3	RF Output, FM Input	SMA fent	nele		
	POWER SUPPLY REQUIREMENT max (mA):	1,1	< 3		
	+15V	2,000			
14	-15V	580			
	+5	300			
	28V, start up	6,500			
4.5	28V, steady state @25°C	2,000	N.		
15	OPERATING TEMPERATURE (°C) MECHANICAL DIMENSIONS	0 to +5	05		
16	Inches	9.20 x 6.2	x 2.00		
10	Millimeters	234.6 x 158.			
		.)	181		
	The state of the s	X	<i>> '</i>		
(1) In DTO mode. Consult factory for specifications					
		> '	\bigoplus		
	395				

Multi-Band Frequency Locked Oscillator (FLO) Specifications

4

Dimensional Tolerances, unless otherwise indicated: .XX ±.02; .XXX ±.008

Multi-Band Frequency Locked Oscillator (FLΩ) Specifications

_			_	- Itel	3
		CONNECTOR J	2	KX "	1 🔳
	PIN No.	FUNCTION		NOTES	Р
	1	AN	4		
	2	A12			1111
	3	A10			
	**	A8			((1))
A A	12,	A6			111
,	6	A4			
	7	A2		· ·	
	8	V0			1
	9	LATCH			
	10	D2		1	
	11	GND			11-
	12	D1		1	
	13	D0		1 _ /	SK
	14	CL		1	8,
	15	FE\		/1/	\ \
	16	N.C.	^	()]
	17	N.C.	X]
	18	AVS]
	19	N.C.			
	20	A13			
	21	A11			
	(22)	A9			
	23	A7			
	24	A5			
	25	A3			
	26	A1			2 12
	27	A0			W.
	28	WR_RD		1	XX
	29	GND		1	
	30	TR_REAL		1 🔨	
	31	FL_DTO		20,	_
	32	LD_IND			
	33	GND		<u> </u>	
	34	CNE			
	35	CND			
	36	S_H_DIS			
	37	GND			

V	1
CON	NECTOR J3
PN No.	FUNCTION
(1)	+5V
2	–15V
3	+15V
4	N.U.
5	28V
6	28V
7	28V
8	28V
9	GND
10	GND
11	N.U.
12	28V Return
13	28 Aeturn
14	28V Return
15,	28V Return

Note:

1. For factory only use, should not be connected.

最別用的人 はは一方 提加斯斯

Voltage Controlled Oscillators (VCOs)

Broadband VCOs

General Microwave's catalog line of broadband VCOs covers the 2-18 GHz frequency range in octave (2-4, 2.6-5.2 and 4-8 GHz) and half-octave (8-12 and 12-18) GHz bands. The major features of the VCOs are fast settling time, low object noise and excellent frequency stability.

A simplified block diagram is shown in Fig. 3. For optimum performance, the active element used is a silicon bipolar transistor. (This is in lieu of GaAs FETs which typically exhibit 10-20 dB poorer ohase noise per crmance. Although GaAs FETs have extremely low noise in amplifier applications, they suffer from high 1/f noise, which is upconverted in the nonlinear oscillator to phase noise near the carrier.) To vary the frequency of the oscillator, a high-Q silicon hyperabrupt varactor is utilized. The capacitance-voltage characteristic is specified to provide as nearly linear frequency vs. voltage tuning curve as possible. In practice, good linearity can only be realized over a small portion of the tuning range because of parasitic reactances present in the physical circuit and the bipolar transistor. Typical ratios of maximum to minimum frequency vs. voltage sensitivity for an octave band are 2:1 and are specified at 3:1. GaAs varactors, although having higher Q's than silicon varactors, suffer from long-term charging effects as well as relatively poor thermal conductivity. Silicon varactors are therefore mandatory in high-speed applications requiring settling times of the order of several hundred nanoseconds and low post-tuning drift.

To minimize pulling effects on the oscillator frequency due to variations in the external load, attenuator pads followed by buffer amplifiers are incorporated at the oscillator output. Voltage regulators are also included to minimize the effect of variations in the power supply

voltage on both oscillator frequency and power level. Finally, illtering is provided to reduce the harmonic content of the output signal.

Of particular note is General Microwave's 8-12 GHz VCO, which utilizes a high performance transistor operating in the fundamental, rather than the doubling push-push mode. This mode of operation eliminates all (2n + 1) f_o/2 frequencies in the output spectrum. The second harmonic signal is specified at -40 dBc maximum but is typically less than -50 dBc

Because fundamental mode oscillation is not currently achievable with available silicon devices in the 12-18 GHz band, the doubling push-push approach, shown schematically in Fig. 4, is used. Thus, for example, for a 12 GHz output frequency each oscillator is designed to operate at 6 GHz. If the structure were perfectly symmetrical, all odd harmonics of 6 GHz would be suppressed, and only even harmonics would be present in the output spectrum. By suitable filtering, an essentially pure 12 GHz output signal could be obtained. In practice, imperfect symmetry results in $f_0/2$ and $f_0/2$ signals, which are filtered to the extent possible (For the case of a 12 GHz output signal, the undesired $3f_0/2$ signal at 18 GHz cannot be filtered since it is within the 12-18 GHz frequency range of the VCO.)

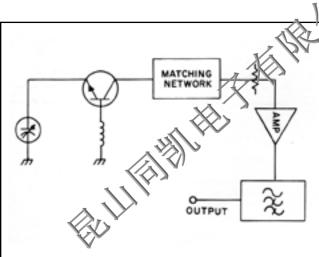


Fig 3-Simplified VCO Block diagram

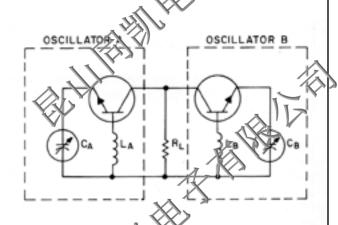


Fig 4-Schematic Cayram of Push-Push Oscillator

Selection Guide

VOLTAGE CONTINUALED OSCILLATORS	(VICAN/RELECTION CHIDE
VOLIAGE CONTINUED OSCILLATORS	(VOUN OLLLO HON GOIDL

	FREQUENCY RANGE (GHz)		Meozu	PAGE	COMMENTS		
	0.5 2 6	8	12.0	18.0			
	4		^	11)	V6020		THE PARTY OF THE P
\langle	2.6 5.2			\(\frac{1}{2}\)	V6026		The second second
	4	8			V6040	394	Octave Band Voltage Controlled Oscillators
	812		V6080				
			12	18	V6120A	NII.	
	2-2.8		V6020-952C	((1))			
	2.83.8		1, K	\	V6020-953C	396	Miniaturized Voltage
	3.8 ———4.9	XX	<u> </u>		V6020-954C		Controlled Oscillators
	4.96.	XX	<i>></i>		V6020-955C		
				18		397	Custom Military and Commercial Voltage Controlled Oscillators

scillato scillato 展別用原規則 最別用原規則

Series V60 Octave Band VCOs

OCTA	VE BAND	vcos	PECITIO	ATIONS

/1/ 1						
			MODE	L		
PARAMETER	V6020	7,6036	V6040	V6080	V6120A	
FREQUENCY NANGE (GHz)	2-4	2.6-5.2	4-8	8-12	12-18	
FREQUENCY 3 (TYLING(1), max (MHz)		10				
within 50 neec, Typical		<u>/</u> / ±8	8		±10	
within 200 nsec, Typical	4 1.	3		4	±5	
within a µsec		1.5	±	3	±4	
MCDULATION	\ <u>\</u>		100		-13/2	
Bandwidth, min (MHz)					XXX	
Sensitivity ratio, max			3:1		7-12	
RF POWER Output, min (dBm)			+10	4	X	
Variation, Incl. temp. and freq. max (dB)	4	X		XX	1	
PHASE NOISE, max (dBc/Hz)	7	***				
@ 100 kHz offset	1 -	5	– 90 ,	11/-86	-80	
HARMONICS, max (dBc)		–15	1	40	-20	
f/2, 3f/2,max (dBc)	X.	N/	A 😯	2	-20	
SPURIOUS, max (dBc)	1-60					
TEMPERATURE STABILITY, typ (PPM, C)	100					
PULLING VSWR 2:1 max (MHz)		\/.	沙 1			
PUSHING, max (kHz/V)	250					
CONNECTORS			0-1-1			
Power supply			Solder ter			
Tuning voltage			SMA fen			
RF output			SMA fen	nale		
POWER SUPPLY REQUIREMENT Voltage (VDC)			+15 ±0	5	4	
Current, max (mA)		15			300 _ 11	
Tuning voltage (VDC)		0 to +20	<u> </u>		0 to +15	
INPUT CAPACITANCE, nominal		0 10 1 20	25 pF, 10) kO	10000	
ENVIRONMENTAL ⁽²⁾		A	_0 p., 10	-	XXX	
Operating temperature (°C)		//	−54 to +	-85	1. 1	
Storage temperature (°C)	_		−54 to +	125	X	
MECHANICAL DIMENSIONS Inches		71.79 x 1.1	0 x 0.45	**	2.19 x 1.10 x 0.45	
Millimeters	-180	45,5 x 27	,9 x 11,4	THIS TO	55,6 x 27,9 x 11,4	
	/ 15			- / / 1		

(1) If relative to f after 1 sec.(2) Hermetically sealed.

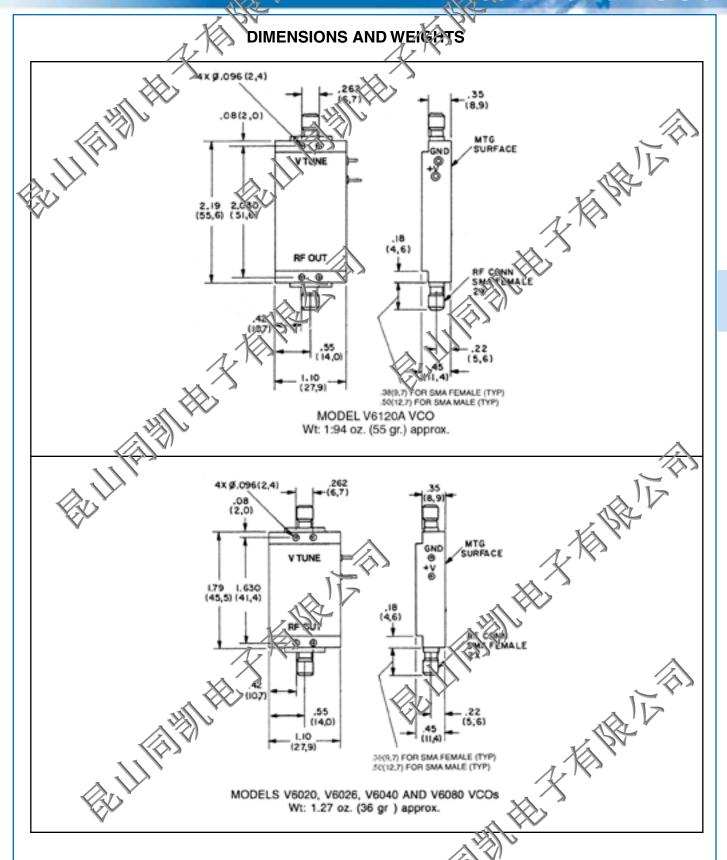
OPTIONS

Option No.

Description

High Rel screening (see Table 1)

G09


Meeting Environmental Ratings

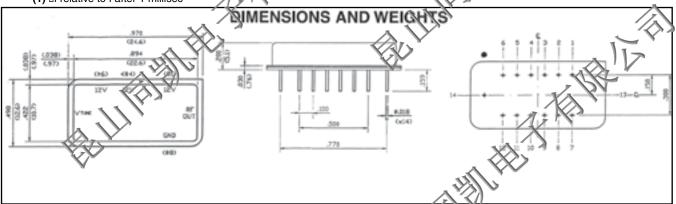
49 High Rel Screening

	44	
TEST	MIL-STD-883	NOTES
Internal Visual	METHODE2017	-
Ten verature Cycle	METHODE 1010	-55 °C to +95 °C, 10 CYCLES Dewll time at temperature 20 minutes min. temp. rise time 3°C/MIN
Mechanical Shock	METHODE 2002, COND. B	1,500g 0.5ms
Burn-In	METHODE 1015, COND. B	48 hours, at +110°C
Leak	METHODE 1014 COND. A1	5X10 ⁻⁸

Series V60 Broad Band VCOs

Series V60-95 Miniaturized VCQs

General Microwave has developed a family of high-speed, miniaturized VCOs covering the 2-6 GHz frequency range. These VCOs have been utilized in airborne EW applications, as well as in ground-based simulators. The specifications are summarized below.



Series V6020-95X Miniaturized VCC

MINIATURIZED VCO SPECIFICATIONS

V		MO	DEL / [K 2
PARAMETER	V6020-952C	V6020-953C	V6020-954	V6020-955C
FREQUENCY RANGE (GHz)	2.0-2.8	2.8-3.8	8.49	4.9-6-1
FREQUENCY SETTLING ⁽¹⁾ , max (MHz) within 1 µsec		±		
RF POWER Output, min (dBm)	S.IV			
Variation, max (dB)	50	11/4	2	
PHASE NOISE, max (dBc/Hz) @ 100 kHz offset	-1	1//		00
HARMONICS, max (dBc)			20	
SPURIOUS, max (dBc)		-6	60	
TEMPERATURE STABILS Y, typ (MHz/°C)	-0	.6	-1	1.0
PULLING VSWR 3:1 typ (MHz)	2	2	3	5
PUSHING, typ (MHz/V)	6	3	1	0
POWER SUPPLY REQUIREMENT Voltage (VDC)		+12	±0.5	
Current, max.(mA)		12	 25	
Tuning(VDS)		0 to	+28	THE THE
TUNING PORT CAPACITANCE, max (pF)		5	0	ZAV
ENVIRONMENTAL Operating temperature (°C)		0 to	+85	
Storage temperature (°C)	10 1	-54 to	o +125	
MECHANICAL DIMENSIONS Inches		0.97 x 0.	50 x 0.20	
Millimeters	100	24,6 x 1		

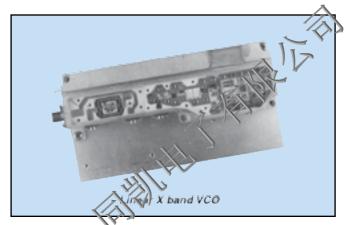
(1) If relative to f after 1 millisec

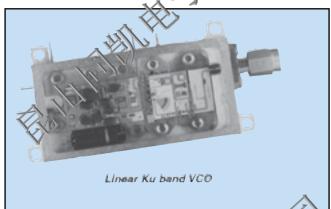
All Models: 0.15 oz.; (4.34 grams) approx.

Dimensional Tolerances, unless otherwise indicated: .XX $\pm .02$; .XXX $\pm .008$

CUSTOM VCOs

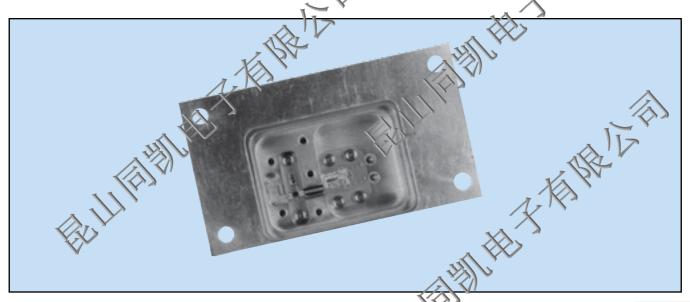
Linear VCOs


For varrowband (<5%) applications, General Microwave has developed proprietary techniques to achieve a high degree of linearity without the use of external linearizes.


Linear X band

An X-band VCO assembly with linearity of less than ±1% is shown in the photo. The assembly includes two MMIC amplifiers, a medium power MIC amplifier, two inters, a phase shifter and a MMIC SP2T switch. For specific requirements, please consult the factory.

Linear Ku band


The photo shows a Ku-band VCO with a spoical linearity of better than ±5% for an airborne camming application. The unit is designed for high speed modulation and also includes RFI/LMI filtering.

Commercial GaAs FET X band

For X- and Ku-band applications where very low post-tuning drift and phase noise are not required, VCOs based upon GaAs FETs provide a cost-effective solution. In the photo, a GaAs FET X-band VCO, developed for a commercial radar application, is shown.

APPENDIX

dBm - Watts Conversion Pables (50 Ohms system)

dBm	V (RMS)	P
+53	1000	200W
+50	70.7	100W
+49	64.0	80W
1	58.0	64W
+48	50.0	50W
	44.5	40W
+46		32W
+45	40.0	
+44	32.5	25W
+43	32.0	20W
+42	26.0	16W
+41	26.2	12.5W
+40	22.5	10W
+39	20.0	8)(
+38	18.0	4W
+37	16.0	(1)5W
+36	14.1	4W
+35	12.5	3.2W
+34	11.5	2.5W
+33	10.0	2W
+32	9.0	1.6W
+31	8.0	1.25W
+30	7.10	1.0W
+29	6.40	800mW
+28	5.80	640mW
+27	5.00	500mW
+26	4.45	400mW
+25	4.00	320mW
+24	3.55	250mW
+23	3.20	200mW
+22	2.80	1680mW
+21	2.52	125mW
+20	2.25	100mW
. 20		

	~		
dBm	V (RMS)	P	
+19	175/08	80mW	
+18	1.80	64mW	
+47	1.60	50mW	
+16	1.41	40mW	
+15	1.25	32mW	
+14	1.15	25mW	
+13	1.00	20mW	
+12	.90	16mW	
+11	.80	12.5mW	
	.71	10mW	
39	.64	8mW	
+8	.56	6.4n.W	
+7	.500	5mW	
+6	.445	4mW	
+5	.400	3.2mW	
+4	.355	2.5mW	
+3	.320	2.0mW	
+2	.280	1.6mW	
+1	.252	1.25mW	
0	.225	1.0mW	
-1	1.200	.80mW	
-2	. 180	.64mW	
18	.160	.50mW	
4	.141	.40mW	
-5	.125	.32mW	
-6	.115	25mW	
-7	.100	.20mW	
-8	.090	.16mW	
-9	.080	.125mW	
-10	.071	.10mW	
-11	.064	.08mW	
-12	.058	.06mW	

dBm	mV (RMS)	Р
-13	50	1
-14	45	
-15	40	
-16	35.5	
-17	3 5	
-18	28.5	
-19	25.1	
50	22.5	.01mW
21	20.0	
-22	17.9	
-23	15.9	
-24	14.1	
-25	12.8	
-26	11.5	
-27	10.0	/
-28	8.9	
-29	8.0	
-30	7.1	.001mW
-31	6.25	
-32	5.8	
-33	5.0	
34	4.5	
-35	4.0	
-36	3.5	^
-37	3.2	
-38	2.85	117
-39	2.5	
-40	2.25	.1µW
-50	0.71	.01µW
-60	0.225	.001µW
-76	71µV	.1nW
-80	22.5µV	.01nW

WR Conversion Table

VSWR-1 _ Reflection Coefficient (r) VSWR+1

Ratio of Power Transmitted

 $(dB) = 10 LOG_{10} \{1-K^2\} = Loss Due to VSWR$

2) -K (dB) = 20 LOG₁₀ K = Return Loss 3) VSWR (db) = 20 LOG₁₀ VSWR = VSWR in De

$\langle \rangle$				1	$\gg_{i} \times$	
{	VSWR	-K (dB)	К	VSWR (dB)	1-K ²	-{1-K ² } (dB)
	1.00	8	.0000	.000	1.00000	.0000
	1.01	46.06	.0050	.086	.99998	.9901
	1.02	40.09	.0099	.172	.99990	.0004
Ī	1.03	36.61	.0148	.257	99978	.0009
ſ	1.04	34.15	.0196	.341	.99362	.0017
	1.05	32.26	.0244	.424	.99941	.0026
	1.06	30.71	.0291	.596	.99915	.0037
Ī	1.07	29.42	10338	.583	.99886	.0050
Ī	1.08	28.30	0385	.668	.99852	.0064
	1.09	27,32	.0431	.749	.99815	.0081
Ī	1.10	26.44	.0476	.828	.99773	.0099
	1.11	25.66	.0521	.906	.99728	.0118
	1.12	24.94	.0566	.984	.99680	.0139
	1.13	24.29	.0610	1.062	.99627	.0162
	1.14	23.69	.0654	1.138	.99572	.0186
	1.15	23.13	.0698	1.214	.99513	.0212
	1.16	22.61	.0741	1.289	.99151	.0239
	1.17	22.12	.0783	1.364	99386	.0267
	1.18	21.66	.0826	1:438	.99318	.0297
	1.19	21.23	.0868	1.511	.99247	.0328
	1.20	20.83	.0209	1.584	.99174	.0360
	1.21	20.44	0950	1.656	.99097	.0394
	1.22	20 08	.0991	1.727	.99018	.0429
	1.23	1973	.1031	1.798	.98936	.0464
	1.24	19.40	.1071	1.868	.98852	.0501

VSWR	-K (dB)	К	VSWF.	1-K ²	{1-k ² } (dB)	
1.25	19.08	.112	1.938	.98765	.0540	
1.26	18.78	1150	2.007	.98676	.0579	
1.27	18.43	1189	2.076	.98585	.0619	
1.28	18.22	.1228	2.144	.98492	.0660	
1.29	17.95	.1266	2.212	.98396	.0702	
136	17.69	.1304	2.279	.98299	.0745	
1.31	17.45	.1342	2.345	.98199	.0789	
1.32	17.21	.1379	2.411	.98098	.0834.	
1.33	16.98	.1416	2.477	.97994	.0880	
1.34	16.75	.1453	2.542	.97889	.0927	
1.35	16.54	.1489	2.607	.97782	0974	
1.36	16.33	.1525	2.671	.97473	.1023	
1.37	16.13	.1561	2.734	.97563	.1072	
1.38	15.94	1597	2 798	.97451	.1121	
1.39	15.75	.1632	2.860	.97337	.1172	
1.40	15.56	1667	2.923	.97222	.1223	
1.41	15.38	1701	2.984	.97106	.1275	
1.42	15 21	.1736	3.046	.96988	.1328	
1.43	15.04	.1770	3.107	.96869	.1382	
42	14.88	.1803	3.167	.96748	1436	
1.45	14.72	.1837	3.227	35.65e	.1490	
1.46	14.56	1870	3.28	96503	.1546	
1.47	14.41	.1903	3,346	.96379	.1602	
1.48	14.26	.1985	3.405	.96254	.1658	
1.49	14.12	.1968	3.464	.96127	.1715	

APPENDIX

			0								
	"	M. W		6		A				1	
Λ	PPE	-NII	NY							115	
Ā					THE						
				X	BA				KX	M	
				XX				1	1 2		
			\times	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			7				
		J.	$U_{\chi\chi}$			VSWR	<u> </u>	versio	n Tab	les	_
			(2)				<i>"</i> (/				
	1	115.3			4	1/1/2					
		<i>></i>			1	2	1 1				
	VSWR	-K	K	VSWR	1-K/	-{1-K ² } (dB)		VSWR	-K	K	VSWF
		(dB)	0000	(dB)	00000		_		(dB)		(dB)
	1.50	13.98	.2000	3.522	.96000	.1773		2.80	6.49	.4737	8,943
	1.55	13.32	.2157	3.807	.95348	.2069	Y''	2.85	6.37	.4805	9.097
	1.60	12.74	.2308	4.082	.94675	.2377		2.90	6.25	4872	9.248
	1.65	12.21	.2453	4.350	.93984	.2696		2.95	6.13	.4937	9.396
	1.70	11.73	.2593	4.609	.93276	.3022		3.00	6.02	.5000	9.542
	1.75	11.29	.2727	4.861	.92562	.3357		3.05	5.91	.5062	9.686
	1.80	10.88	.2857	5105	.91837	.3698		3.10	5.81	.5122	9.827
	1.85	10.51	.2982	5.343	.91105	.4046		3.15	5.71	.5181	9.966
	1.90	10.16	.3103	-	.90369	.4398		3.20	5.62	.5238	10.103
	1.95	9.84	3220	5.801	.89629	.4755		3.25	5.52	.5294	10.238
	2.00	9.54	.3333	6.021	.88889	.5115		3.30	5.43	.5349	10.370
	2.05	9 26	.3443	6.235	.88148	.5479		3.35	5.35	.5402	10.501
	2.10	9.00	.3548	6.444	.87409	.5844		3.40	5.26	.5455	10.630
	2.15	8.75	.3651	6.649	.86672	.6212	1	3.45	5.18	.5506	10.75
	2.20	8.52	.3750	6.848	.85938	.6582	7 (3.50	5.11	.5556	10.881
	2.25	8.30	.3846	7.044	.85207	6952		3.55	5.03	.5604	11.005
	2.30	8.09	.3939	7.235	.84481	.7824		3.60	4.96	.5652	11.126
	2.35	7.89	.4030	7.421	.83760	.7696		3.65		.5399	11.246
	2.40	7.71	.4118	7.604	.83045	.8069		3.70	48	.5745	11.364
	2.45	7.53	.4203	7.783	82336	.8441		3.75	4.75	.5789	11.481
	2.50	7.36	.4286	\$7.9530	.81633	.8814		3.80	4.68	.5833	11.596
	2.55	7.20	.4366	8.131	.80936	.9186		3.85	4.62	.5876	11.709
	2.60	7.04	4444	8.299	.80247	.9557		3.90	4.56	.5918	11.821
	2.65	6.90	.4521	8.465	.79565	.9928		3.95	4.50	.5960	11.932
	2.70	6.76	.4595	8.627	.78890	1.0298		4.00	4.44	.6000	.2.041
	2.75	6.62	.4667	8.787	.78222	1.0667			_	THE STATE OF	>

VSWR	-K (dB)	К	VSWR (dB)	-K2	{1-k ² } (dB)
2.80	6.49	.4737	8,943	.77562	1.1035
2.85	6.37	.4805	9.097	.76910	1.1402
2.90	6.25	4872	9.248	.76266	1.1767
2.95	6.13	.4937	9.396	.75629	1.2131
3.00	6.02	.5000	9.542	.75000	1.2494
3.03	5.91	.5062	9.686	.74379	1.2855
3.10	5.81	.5122	9.827	.73766	1.3215
3.15	5.71	.5181	9.966	.73160	1.3573
3.20	5.62	.5238	10.103	.72562	1.3929
3.25	5.52	.5294	10.238	.71972	1.4283
3.30	5.43	.5349	10.370	.71390	1 4636
3.35	5.35	.5402	10.501	.70815	1.4987
3.40	5.26	.5455	10.630	76248	1.5337
3.45	5.18	.5506	10.756	.69688	1.5684
3.50	5.11	.5556	10.881	.69136	1.6030
3.55	5.03	.5604	11.005	.68591	1.6373
3.60	4.96	.5652	11.126	.68053	1.6715
3.65	4.88	.5599	11.246	.67522	1.7055
3.70	48	.5745	11.364	.66999	1.7393
3.75	4.75	.5789	11.481	.66482	1.7730
3.80	4.68	.5833	11.596	.65972	1.8064
3.85	4.62	.5876	11.709	65469	1.8396
3.90	4.56	.5918	11.821	.04973	1.8727
3.95	4.50	.5960	11.932	.64483	1.9055
4.00	4.44	.6000	12,041	.64000	1.9382

Terms and Conditions of Sale

- 1. CONTROLLING PROVISIONS: Seller is the division/subsidiary of KRATOS. that accepts the order of the Buyer. ALL SALES ARE EXPRESSLY LIMITED TO AND THE RIGHTS OF THE PARTIES SHALL BE GOVERNED EXCLUSIVELY BY THE TERMS AND CONDITIONS STATED HEREIN WHETHER THIS CONTRACT, OF WHICH THIS CONDITIONS OF SALE IS A PART, REPRESENTS AN OFFER BY SELLER OR SELLER'S CONDITIONAL ACCEPTANCE OF BUYER'S OFFER. SELLER'S OFFER IS EXPRESSLY CONDITIONED ON BUYER'S ACCEPTANCE OF THE TERMS AND CONDITIONS OF THIS CONTRACT. SELLER'S ACCEPTANCE OF BUYER'S OFFER IS EXPRESSLY CONDITIONED ON BUYER'S ASSENT TO THE TERMS AND CONDITIONS OF THIS CONTRACT. No addition to, waiver or modification of these terms and conditions shall be binding on Seller unless expressly agreed to in writing by Seller. All quotations or resulting contracts shall be interpreted under the laws of the State of Delaware and exclude the provisions of the 1980 United Nations Convention on Contracts for the International Sale of Goods and the U. N. Convention on the Limitation Period in the International Sale of Goods, as amended by Protocol. No sale of the ability of Seller to get required export license(s).
- 2. TERMS, TAXES AND PRICES: (a) Terms of payment are subject to the approval of Seller's credit department. Unless otherwise agreed to in writing by Seller, all payments are due not thirty (30) days from the date of invoice. In the event that the Buyer his failed to pay Seller for products or services ordered under different contracts or under this Contract as required by the terms and conditions of said contracts or Contract Seller, at its option shall have the right to make any delivery under this Contract payable on a cash before shipment basis. In the case of export sales, unless otherwise agreed to in writing by Seller, all payments are to be by means of a confirmed irrevocable letter of credit. (b) In addition to the prices specified in the Contract between the parties, (referred to in this Conditions of Sale as "Contract"), Buyer shall pay Seller the amount of any excise, sales, privilege, use or any other taxes or government charges, local, state or federal, which arise from the sale or delivery of the products, or in lieu thereof, Buyer shall provide Seller with a tax exemption certificate acceptable to the appropriate taxing authorities. (c) Prices and deliveries are F.O.B.. Ex Works Seller's plant. Prices on accepted orders and covering Seller-manufactured products are firm for a period of six months from date of acceptance. Seller reserves the right to increase the prices at the time of shipment to the extent of any increase in cost to it of any item not of Sellers manufacture on which firm prices were not available on the date of acceptance.
- 3. SHIPMENT: Deliveries are F.O.B. Ex Works Seller's plant. Risk of loss shall pass to the Buyer upon delivery to the carrier. Any claims for damage or loss in shipment are between the carrier and Buyer. Seller shall not be involved in such claims beyond Seller's assistance is processing and securing information pertaining to such damage claims.
- 4. DELAYS: The delivery date(s) under the Contract is only an estimate and is based upon prompt receipt of all necessary information from Buyer. The delivery date(s) is subject to and shall be extended by delays caused by strikes, fires, accidents, shortages of labby or materials, embargoes, or delays in transportation, compliance with government agency or official equests, or any other similar or desimilar cause beyond the reasonable control of Seller. FAILURE TO DELIVER WITHIN THE TIME ESTIMATED SHALL: NOT BE A BREACH OF CONTRACT ON SELLER'S PART AND IN NO EVENT WHATSOLEVER WILL SELLER BE RESPONSIBLE OR BUYER ENTITLED TO ANY DIRECT OR INDIRECT INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OR OF OR RELATING TO ANY DELAY IN DELIVERY. If Buyer causes Seller to delay shipment or completion of work, Seller shall be entitled to any and all extra cost and expenses resulting from such delay.
- 5. CANCELLATIONS AND ALTERATIONS: (a) Accepted orders may by cancelled by Buyer only with Seller's express written consent. If cancellation is allowed, Buyer agrees to pay to Seller all expenses in carried and damage sustained by Seller on account of such cancellation, plus a reasonable profit. (b) The delivery date(s) or specifications of accepted orders, whether completed or in process, cannot be altered except by Seller's express written consent and upon terms which will indemnify Seller for all expenses incurred and damages sustained by Seller on account of such alteration, plus a reasonable profit

KRATOS General Microwave Terms and Conditions of Sale

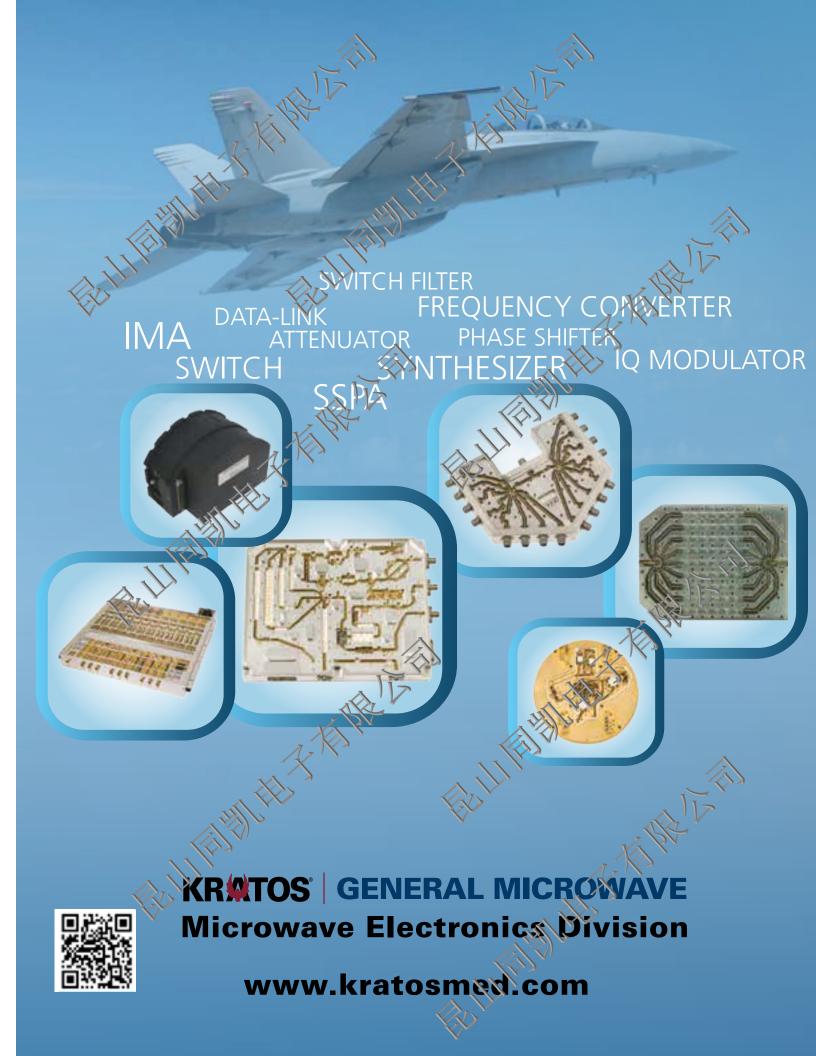
- 3. SHIPMENT: Deliveries are F.O.B. Ex Works Seller's plant. Risk of loss shall pass to the Buyer upon delivery to the carrier. Any claims for damage or loss in shipment are between the carrier and Buyer. Seller shall not be involved in such claims beyond Seller's assistance is processing and securing information pertaining to such damage claims.
- 4. DELAYS: The delivery date(s) under the Contract is only an estimate and is based upon prompt receipt of all necessary information from Buyer. The delivery date(s) is subject to and shall be extended by delays caused by strikes, fires, accidents, shortages of labor or materials, embargoes, or delays in transportation, compliance with government agency or official requests, or any other similar or dissimilar cause beyond the reasonable control of Seller. FAILURE TO DELIVER WITHIN THE TIME ESTIMATED SHALL: NOT BE A BESACH OF CONTRACT ON SELLER'S PART AND IN NO EVENT WHATSOEVER WILL SELLER SERE-PONSIBLE OR BUYER ENTITLED TO ANY DIRECT OR INDIRECT INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OR OF OR RELATING TO ANY DELAY IN DELIVERY. If Buyer causes Seller to delay shipment or completion of work, Seller shall be entitled to any and all extra cost and expenses resulting from such delay.
- 5. CANCELLATIONS AND ALTERATIONS: (a) Accepted orders may by cancelled by Buyer only with Seller's express written consent. If cancellation is allowed, Buyer agrees to pay to Seller all expenses incurred and damage sustained by Seller on account of such cancellation, plus a reasonable orbit. (b) The delivery date(s) or specifications of accepted orders, whether completed or in process, cannot be altered except by Seller's express written consent and upon terms which will indemnify Seller for all expenses incurred and damages sustained by Seller on account of such abstration, plus a reasonable profit
- 6 WARRANTY: Subject to the terms, conditions and limitations hereinafter set forth, Seller warrants, to the original Buyer only, each new product manufactured by seller to be free from defects in material and workmanship. Seller's entire and exclusive obligation and liability, and Buyer's sole and exclusive remedy, under the warranty is limited to repairing or replacing at Sellers option, free of charge; F.O.B. Ex Works Seller's plant, any part proving de ective during the duration of this express warranty. The obligations of Seller under this warranty shall not include any transportation cost, labor costs, installation costs. or other costs or charges associated with the repair or replacement This warranty shall not be enforceable if the Buyer is in default in making any contract payment The duration of this express warranty (a) for new equipment is one year from the date of shipment and (b) for any SELLER replacement part is 90 days after the date of install ation, but more than 6 months after shipment. This warranty does not cover failures caused in whole or in part by (Mimproper installation, by other than SELLER, or maintenance; (2) improper use or application; (3) corrosion; (4) normal deterioration; (5) operation beyond rated capacity, (6) the use of replacement parts or lubricants which do not meet or exceed Seller's specifications, or (7) improper repairs. Products furnished, but not manufactured by Seller, are not covered by this warranty, but by only such warranties as are given by the said manufacturers to Seller. To qualify for warranty consideration at the earlier of the Buyer's discovery of the defect or the time at which the Buyer should have discovered the defect; Buyer houst immediately notify Seller and must promptly thereafter return to Seller (freight prepaid) all defective parts. THIS WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER EXPLIESS OR IMPLIED WARRANT IS NCLUDING WITHOUT LIMITATION ANY WARRANTY OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE WHICH ARE HEREBY DISCLAIMED THE OBLIGATION AND LIABILITY OF SELLER UNDER THE EXPRESS WARRANTY STATED SHALL NOT INCLUDE LIABILITY FOR LOSS OF USE, LOSS OF PROFITS OR ANY OTHER DIRECT OR INCRESC. INCIDENTAL OR CONSECUENTIAL DAMAGES CAUSED BY OR ANY OTHER DIRECT OR INDIRECT INCIDENTAL OR CONSEQUENTIAL DAMAGES CAUSED BY THE FAILURE OF ITS PRODUCT OR ANY DEFECT IN THAT PRODUCT OR DELAY IN REMEDYING THE SAME.
- 7. LIABILITY: Seller shall not be liable to Buyer for (a) any losses; (b) any direct or indirect incidental of consequential damages of (c) any delays, caused by the failure of its product or any defect in that or duct, except to repair or replace exfective parts as provided for in the Warranty provision. Seller's warranty runs only to Buyer and soes not extend expressly or by implications, to any other person. Buyer agrees that Seller's fulfillment of all Seller's liabilities. whether in contract or in tort, with respect to the Contract. Buyer also agrees that Seller's hall not be liable for any damages to Buyer or to a third person arising out of the presence of the installed products on Buyer's or third person's premises or out of the use or operation thereof. In no event what soever, shall Seller be held liable to Buyer for any direct or indirect incidental, exemplary, or consequential damages

Terms and Conditions of Sale

- 8. PATENTS: Seller agrees it indemnify. Buyer against all damages and costs recovered in any patent litigation upon Buyer's use of Seller's products in the manner intended by Seller in an amount not exceeding the sum paid for the infringing products provided (a) Buyer immediately notifies the Seller in writing of any such claim of infringement (b) Buyer allows Seller to employ counsel, conduct the defense to a finality and assist Seller with the defense, and (c) Buyer shall have paid for all the products or shall not be in default in any of the required payments. Seller assumes no liability as to possible patent infringement by virtue of the use of its products in combination with other elements or structures or the use of products manufactured to Buyer specifications if any of its products should be held in any such suit to constitute infringement and its use enjoined Seller shall have the right, at Seller's option, at its own expense, either to procure for Buyer the right to continue such use or to substitute, other non infringing or to remove such infringing products and refund to Buyer all money paid to Seller. Except as herein specifically provided, Seller shall not be liable to Buyer for any patent infringement by said products or any part thereof.
- 9. EQUIPMENT NOT SPECIFIED: Machinery, equipment, materials and labor services, including engineering or mechanical services, not specified in the Contract, are to be furnished in all cases by Buyer.
- 10. CHANGES OF CONSTRUCTION AND DESIGN: Seller reserves the right to change or revise the construction and design of the products purchased by Buyer, if in its judgment is to its own or Buyer's best interest to do so. Buyer agrees to bear the exponse of meeting any changes or modifications in regulatory or code requirements which become effective after seller has accepted Buyer's order.
- 11. MATERIAL SPECIFIED BY CONTBACT: The Contract specifies the products supplied by Seller. The amount or the kind of such products is not changed nor increased by anything shown upon drawings furnished by Seller which are not a part of the Contract documents.
- 12. RETURNED PRODUCES AND RESTOCKING: Including Products covered in paragraph 6, Products may not be returned without the express written consent of Seller and in accordance with shipping instructions from Seller. All transportation charges to and from Seller's factory are to be paid by Buyer. Products made to special order are not returnable. A restocking charge of not less than twenty percent (20%) will apply on standard products accepted by Seller for a return and credit. Seller will not be responsible for the disposition of returned products unless the terms of this provision are complied with.
- 13. ENTIRE AGREEMENT: The parties agree that there an no agreements or representations express or implied, between the parties other than what is contained in this Contract of which this Conditions of Sale is a part, which represents the entire agreement between Seller and Buyer with the exception of these agreements, if any, expressly agreed to in writing by Seller. No course of prior dealings and no usage of the trade shall be relevant to supplement or explain any terms used in this Contract. The Contract between the parties may be modified or rescinded only by a writing signed by both Seller's contracts representative and Buyer's procurement representative.
- 14. CHARACTER OF PRODUCT AND SECURITY INTEREST: The products valivered by Seller under the terms of the Contract shall remain personal property and retain its character as such no matter in what manner affixed or attached to any structure crop operty. Buyer grants Seller a security interest in said products, including any proceeds there from with remedy of self help until all sums are Seller have bean paid to it in cash.
- 15. FORCE MAJEURE: Neither party shall be liable in damages or have the right to terminate this Agreement for any delay or default in performing hereunder if such delay or default is caused by conditions beyond its control including, but not limited to Acts of God, Government restrictions (including the denial or cancellation of any export or other necessary license), wars, insurrections and/or any other cause beyond the reasonable control of the party whose performance is affected.

KRATOS General Microwave Terms and Conditions of Sale

16. INSTALLATION: If installation by the Seller is included within this quotation, Purchaser shall provide all of the following at its own expense and at all times pertinent to the installation:


Free, dry, unrestricted and continuous access to Purchase 's premises.

(b) Proper foundations lighting, power, water and storage is cilities

reasonably required. 展別展展 展別展開 展別展開 展別展開 最加加加州

THE REPORT OF THE PARTY OF THE 限加州市洲 根拟形成 限以其限制 AND THE PARTY OF T ormation contained in the data sheet (s) meets the parameters of ITAR 120 10 (b)

